Powered By Blogger

lunes, 22 de noviembre de 2010

Applications of Mesh networks

Mesh networks may involve either fixed or mobile devices. The solutions are as diverse as communication needs, for example in difficult environments such as emergency situations, tunnels and oil rigs to battlefield surveillance and high speed mobile video applications on board public transport or real time racing car telemetry. A significant application for wireless mesh networks is VoIP. By using a Quality of Service scheme, the wireless mesh may support local telephone calls to be routed through the mesh. For example, miner safety has improved with VOIP phones communicating over a mesh network.

Some current applications:
U.S. military forces are now using wireless mesh networking to connect their computers, mainly ruggedized laptops, in field operations. It enables troops to know the locations and status of every soldier or marine, and to coordinate their activities without much direction from central command. Video Clip
Electric meters now being deployed on residences transfer their readings from one to another and eventually to the central office for billing without the need for human meter readers or the need to connect the meters with cables.[citation needed]
The laptops in the one laptop per child program use wireless mesh networking to enable students to exchange files and get on the Internet even though they lack wired or cell phone or other physical connections in their area.

The 66-satellite Iridium constellation operates as a mesh network, with wireless links between adjacent satellites. Calls between two satellite phones are routed through the mesh, from one satellite to another across the constellation, without having to go through an earth station. This makes for a smaller travel distance for the signal, reducing latency, and also allows for the constellation to operate with far fewer earth stations that would be required for 66 traditional communications satellites.

http://en.wikipedia.org/wiki/Wireless_mesh_network#Applications

Wireless mesh Architecture

Wireless mesh architecture is a first step towards providing high-bandwidth network over a specific coverage area. Wireless mesh architectures infrastructure is, in effect, a router network minus the cabling between nodes. It's built of peer radio devices that don't have to be cabled to a wired port like traditional WLAN access points (AP) do. Mesh architecture sustains signal strength by breaking long distances into a series of shorter hops. Intermediate nodes not only boost the signal, but cooperatively make forwarding decisions based on their knowledge of the network, i.e. perform routing. Such an architecture may with careful design provide high bandwidth, spectral efficiency, and economic advantage over the coverage area.

Example of three types of wireless mesh network:
Infrastructure wireless mesh networks: Mesh routers form an infrastructure for clients.
Client wireless mesh networks: Client nodes constitute the actual network to perform routing and configuration functionalities.
Hybrid wireless mesh networks: Mesh clients can perform mesh functions with other mesh clients as well as accessing the network.

Wireless mesh networks have a relatively stable topology except for the occasional failure of nodes or addition of new nodes. The traffic, being aggregated from a large number of end users, changes infrequently. Practically all the traffic in an infrastructure mesh network is either forwarded to or from a gateway, while in ad hoc networks or client mesh networks the traffic flows between arbitrary pairs of nodes.

http://en.wikipedia.org/wiki/Wireless_mesh_network#Architecture

Wireless mesh network

A wireless mesh network (WMN) is a communications network made up of radio nodes organized in a mesh topology. Wireless mesh networks often consist of mesh clients, mesh routers and gateways. The mesh clients are often laptops, cell phones and other wireless devices while the mesh routers forward traffic to and from the gateways which may but need not connect to the Internet. The coverage area of the radio nodes working as a single network is sometimes called a mesh cloud. Access to this mesh cloud is dependent on the radio nodes working in harmony with each other to create a radio network. A mesh network is reliable and offers redundancy. When one node can no longer operate, the rest of the nodes can still communicate with each other, directly or through one or more intermediate nodes. The animation below illustrates how wireless mesh networks can self form and self heal. Wireless mesh networks can be implemented with various wireless technology including 802.11, 802.16, cellular technologies or combinations of more than one type.

A wireless mesh network can be seen as a special type of wireless ad-hoc network. It is often assumed that all nodes in a wireless mesh network are immobile but this need not be so. The mesh routers may be highly mobile. Often the mesh routers are not limited in terms of resources compared to other nodes in the network and thus can be exploited to perform more resource intensive functions. In this way, the wireless mesh network differs from an ad-hoc network since all of these nodes are often constrained by resources.

The principle is similar to the way packets travel around the wired Internet — data will hop from one device to another until it reaches its destination. Dynamic routing algorithms implemented in each device allow this to happen. To implement such dynamic routing protocols, each device needs to communicate routing information to other devices in the network. Each device then determines what to do with the data it receives — either pass it on to the next device or keep it, depending on the protocol. The routing algorithm used should attempt to always ensure that the data takes the most appropriate (fastest) route to its destination.

http://en.wikipedia.org/wiki/Wireless_mesh_network

Wireless community network

Wireless community networks or wireless community projects are the organizations that attempt to take a grassroots approach to providing a viable alternative to municipal wireless networks for consumers.

Because of evolving technology and locales, there are at least four different types of solution:
Cluster: Advocacy groups which simply encourage sharing of unmetered internet bandwidth via Wi-Fi, may also index nodes, suggest uniform SSID (for low-quality roaming), supply equipment, dns services, etc.
Mesh: Technology groups which coordinate building a mesh network to provide Wi-Fi access to the internet
WISP: A mesh that forwards all traffic back to consolidated link aggregation point(s) that have centralized access to the internet

WUG: A wireless user group run by wireless enthusiasts. An open network not used for the reselling of internet. Running a combination of various off the shelf WIFI hardware running in the license free ISM bands 2.4 GHz/5.8 GHz

Certain countries regulate the selling of internet access, requiring a license to sell internet access over a wireless network. In South Africa it is regulated by ICASA They require that WISP's apply for a VANS or ECNS/ECS license before being allowed to resell internet access over a wireless link. The cluster and mesh approaches are more common but rely primarily on the sharing of unmetered residential and business DSL and cable Internet. This sort of usage might be non-compliant with the Terms of Service (ToS) of the typical local providers that deliver their service via the consumer phone and cable duopoly. Wireless community network sometimes advocate complete freedom from censorship, and this position may be at odds with the Acceptable Use Policies of some commercial services used. Some ISPs do allow sharing or reselling of bandwidth.

http://en.wikipedia.org/wiki/Wireless_community_network

Uses of Wireless

Wireless networks have continued to develop and their uses have grown significantly. Cellular phones are part of huge wireless network systems. People use these phones daily to communicate with one another. Sending information overseas is possible through wireless network systems using satellites and other signals to communicate across the world. Emergency services such as the police department utilize wireless networks to communicate important information quickly. People and businesses use wireless networks to send and share data quickly whether it be in a small office building or across the world.

Another important use for wireless networks is as an inexpensive and rapid way to be connected to the Internet in countries and regions where the telecom infrastructure is poor or there is a lack of resources, as in most developing countries.

Compatibility issues also arise when dealing with wireless networks. Different components not made by the same company may not work together, or might require extra work to fix these issues. Wireless networks are typically slower than those that are directly connected through an Ethernet cable.

A wireless network is more vulnerable, because anyone can try to break into a network broadcasting a signal.Many networks offer WEP - Wired Equivalent Privacy - security systems which have been found to be vulnerable to intrusion. Though WEP does block some intruders, the security problems have caused some businesses to stick with wired networks until security can be improved. Another type of security for wireless networks is WPA - Wi-Fi Protected Access. WPA provides more security to wireless networks than a WEP security set up. The use of firewalls will help with security breaches which can help to fix security problems in some wireless networks that are more vulnerable.

http://en.wikipedia.org/wiki/Wireless_network#Uses

Types of wireless connections

Wireless PAN

Wireless Personal Area Networks (WPANs) interconnect devices within a relatively small area, generally within reach of a person. For example, Bluetooth provides a WPAN for interconnecting a headset to a laptop. ZigBee also supports WPAN applications. Wi-Fi PANs are also getting popular as vendors have started integrating Wi-Fi in variety of consumer electronic devices. Intel My WiFi and Windows 7 virtual Wi-Fi capabilities have made Wi-Fi PANs simpler and easier to set up and configure.

Wireless LAN

A wireless local area network (WLAN) links two or more devices using a wireless distribution method (typically spread-spectrum or OFDM radio), and usually providing a connection through an access point to the wider internet. This gives users the mobility to move around within a local coverage area and still be connected to the network.
Wi-Fi: Wi-Fi is increasingly used as a synonym for 802.11 WLANs, although it is technically a certification of interoperability between 802.11 devices.
Fixed Wireless Data: This implements point to point links between computers or networks at two locations, often using dedicated microwave or laser beams over line of sight paths. It is often used in cities to connect networks in two or more buildings without physically wiring the buildings together.

Wireless MAN

Wireless Metropolitan area networks are a type of wireless network that connects several Wireless LANs.

WiMAX is the term used to refer to wireless MANs and is covered in IEEE 802.16d/802.16e.

Wireless WAN

wireless wide area networks are wireless networks that typically cover large outdoor areas. These networks can be used to connect branch offices of business or as a public internet access system. They are usually deployed on the 2.4 GHz band. A typical system contains base station gateways, access points and wireless bridging relays. Other configurations are mesh systems where each access point acts as a relay also. When combined with renewable energy systems such as photo-voltaic solar panels or wind systems they can be stand alone systems.

Mobile devices networks

With the development of smart phones, cellular telephone networks routinely carry data in addition to telephone conversations:
Global System for Mobile Communications (GSM): The GSM network is divided into three major systems: the switching system, the base station system, and the operation and support system. The cell phone connects to the base system station which then connects to the operation and support station; it then connects to the switching station where the call is transferred to where it needs to go. GSM is the most common standard and is used for a majority of cell phones.[5]
Personal Communications Service (PCS): PCS is a radio band that can be used by mobile phones in North America and South Asia. Sprint happened to be the first service to set up a PCS.

D-AMPS: Digital Advanced Mobile Phone Service, an upgraded version of AMPS, is being phased out due to advancement in technology. The newer GSM networks are replacing the older system.

http://en.wikipedia.org/wiki/Wireless_network#Types_of_wireless_connections

802.11 Wireless Standard

Before setting up wireless network, you need to understand 802.11 wireless standard that can be used. 802.11a, 802.11b and 802.11g are three popular wireless communication standards. Wireless networks can be built using any of the three, but each has its advantages and disadvantages. 

802.11b

In September of 1999, the IEEE 802 committee extended the 802.11 standard, created 802.11b standard. It became popular due to low setup cost and bandwidth support up to 11Mbps in the 2.4GHz S-Band Industrial, Scientific, and Medical (ISM) frequency range. For your information, the maximum bandwidth supported by original 802.11 standard is only 2Mbps.

Being an unregulated frequency, 802.11b device can suffer interference from other wireless users, cordless phones, microwave ovens and other devices using the same 2.4 GHz band. However the interference can be avoided by placing 802.11b device a reasonable distance from other devices.

802.11a

802.11a was created the same time with 802.11b with the ability to support 55Mbps in the 5GHz band. 802.11a is not popular due to the slow availability of the 5 GHz components needed to implement products by vendor, more expensive cost and not compatible with 802.11b. The higher frequency also makes 802.11a signals have more difficulty to penetrate walls and other obstructions.

However the advantage of 802.11a is that it operates at a radio frequency that's less clogged by competing signals from other wireless users, cordless phones and microwave ovens. Its maximum bandwidth is higher as well comparing to 802.11b. 802.11a is usually found on business networks whereas 802.11b better suits the home network.

802.11g

Due to 802.11b is not compatible with 802.11a and there are needs for higher bandwidth, 802.11g was ratified in June 2003 to provide high data rate and maintain backward compatibility with 802.11b products.

802.11g supports bandwidth up to 55Mbps in the 2.4GHz band. 802.11g is compatible with 802.11b products because they both use the same radio frequency (2.4GHz) to transmit data over the airwaves, it means 802.11g wireless router will be able to talk to 80.11b wireless adapter. 802.11g also provides better security features, such as WiFi Protected Access (WAP) and WPA2 authentication with pre-shared key or RADIUS server.

Again, 802.11g also suffers from the same interference as 802.11b in the already crowded 2.4 GHz range, but can be avoided by placing 802.11g device a reasonable distance from other devices

802.11n

802.11n is latest wireless communication standard that was approved by IEEE in October 2009, and it can provide bandwidth up to 600Mbps, 10 times faster than 802.11g.

Prior to the release of this final approved 802.11n, several vendors already produced the wireless products based on 802.11n draft standard and they’re called 802.11pre-n or 802.11n(draft) wireless products, and it’s good to know that the 802.11n wireless product is backward compatible with those draft-n products.

Furthermore, 802.11n can operate in 2.4GHz or 5GHz band, and is backward compatible with 802.11a (5GHz band), 802.11b (2.4GHz band) and 802.11g (2.4GHz band) products.

If you want to set up a wireless network, you can use wireless products that support 802.11n standard that supports much higher bandwidth, but it’s more expensive if you compare to 802.11g products.

http://www.home-network-help.com/802-11.html

Setting Up Ad Hoc Wireless Network in Windows XP

Do you know that you can set up ad hoc wireless network to share Internet Connection at home without using router and switch? Of course you can also use it to share files or printer between 2 or more computers wirelessly.

Please note you can have up to 9 wireless clients in an ad-hoc wireless network, which the computers send their data directly to each other. The only drawback of this approach is its limited wireless range support. You would need to have wireless router or access point for better wireless coverage.

IP Address Allocation: 

You need to allocate the IP address to each computer that involves in this ad-hoc wireless network. If you have 3 computers, you can simply assign 192.168.0.1, 192.168.0.2 and 192.168.0.3 to each computer with netmask 255.255.255.0.

Host Computer Configuration

1) Let’s start with the configuration, here I will choose one computer to start the configuration, right click wireless adapter and then click properties.

Note: Please enable this host computer's ad hoc configuration on ICS host computer if you want to use Microsoft's Internet Connection Sharing feature.

2) Wireless Network Connection Properties will appear. Click Wireless Networks tab, here I tick Use Windows to configure my wireless network settings. After that click Advanced button.

Note: You can also use the configuration tool provided by wireless adapter manufacturers to configure ad hoc wireless network.

3) Advanced window will appear. Select Computer-to-computer (ad hoc) networks only option. Click Close at last.

Note: Don’t tick Automatically connect to non-preferred networks in order to ease the configuration.

4) After that, click Add to add new ad hoc wireless network.

5) Name your ad hoc network, here I use home-adhoc. Try to use open authentication without encryption first. After tested it works well, only proceed to enable WPA or WEP encryption. Click OK at last.

6) Now you will see your created ad hoc network (PC card icon) in preferred networks list. Wooo.. You have finished configuring this host computer.

Client Computer Configuration

1) On other client computers, you only need to set its wireless adapter to use Windows to configure its network settings and enable Computer-to-computer (ad-hoc) networks only. Simply follow step 2 and 3 on host computer configuration above to get it done.

2) You then right click wireless adapter to view available wireless networks, you will see your ad hoc wireless network, proceed to connect to it. At this stage, you should be able to connect to this ad hoc wireless network!!! Have fun… :o)

Note: If you have Internet Connection Sharing enabled on host computer, you can just set each client computer to obtain an IP address automatically, then these computers should be able to access Internet.

http://www.home-network-help.com/ad-hoc-wireless-network.html

Wireless Operating Mode

The IEEE 802.11 standards specify two operating modes: infrastructure mode and ad hoc mode.

Infrastructure mode is used to connect computers with wireless network adapters, also known as wireless clients, to an existing wired network with the help from wireless router or access point. The 2 examples which I specified above operate in this mode.

Ad hoc mode is used to connect wireless clients directly together, without the need for a wireless router or access point. An ad hoc network consists of up to 9 wireless clients, which send their data directly to each other.

http://www.home-network-help.com/wireless-network.html

What is wireless network?

Wireless network is a network set up by using radio signal frequency to communicate among computers and other network devices. Sometimes it’s also referred to as WiFi network or WLAN. This  network is getting popular nowadays due to easy to setup feature and no cabling involved. You can connect computers anywhere in your home without the need for wires.

Here is simple explanation of how it works, let say you have 2 computers each equipped with wireless adapter and you have set up wireless router. When the computer send out the data, the binary data will be encoded to radio frequency and transmitted via wireless router. The receiving computer will then decode the signal back to binary data.

It doesn’t matter you are using broadband cable/DSL modem to access internet, both ways will work with wireless network. If you heard about wireless hotspot, that means that location is equipped with wireless devices for you and others to join the network. You can check out the nearest hotspots from your home here.

The two main components are wireless router or access point and wireless clients.

http://www.home-network-help.com/wireless-network.html

domingo, 18 de julio de 2010

Banda de Onda Corta

La Onda Corta, también conocida como SW (del inglés shortwave) o HF (high frequency) es una banda de radiofrecuencias comprendidas entre los 2300 y los 29999 kHz en la que transmiten (entre otras) las emisoras de radio internacionales para transmitir su programación al mundo y las estaciones de radioaficionados.

En estas frecuencias las ondas electromagnéticas, que se propagan en línea recta, rebotan a distintas alturas (cuanto más alta la frecuencia a mayor altura) de la ionosfera (con variaciones según la estación del año y la hora del día), lo que permite que las señales alcancen puntos lejanos e incluso den la vuelta al Planeta.

Se distinguen: entre 14 y 30 MHz las bandas altas o bandas diurnas cuya propagación aumenta en los días de verano, y entre 3 y 10 MHz las bandas bajas o nocturnas cuya propagación es mejor en invierno. La bandas intermedias como la de radioaficionados de 10 MHz (30m) y la de radiodifusión internacional de 25m presentan características comunes a ambas.

Las bandas nocturnas son bandas cuya propagación es mejor durante la noche, y mejor en las noches de invierno.

Las bandas diurnas son bandas que, debido a la física de la ionósfera, tienen una mejor propagación de día que de noche, y mucho mejor durante los días de verano. Además, las bandas altas presentan otros modos de propagación, comunes con los de la VHF, como las Esporádicas-E.

La estación del año influye no sólo en la duración respectiva del día y de la noche. También influye en la llamada propagación en zona gris, que permite aprovechar una buena propagación durante algunos minutos entre zonas que comparten la misma hora solar de amanecer o puesta del sol.

En radiodifusión hay las Bandas Tropicales de 90, 75 y 60 metros, y las Bandas Internacionales de 49, 41, 31, 25, 21, 19, 16, 13 y 11 metros.

Los radioaficionados cuentan con varias bandas en HF: las de 3, 7, 10, 14, 18, 21, 24 y 28 MHz, que corresponden a las bandas de 80, 40, 30, 20, 17, 15, 12 y 10 metros respectivamente.

La radio de onda corta es similar a las estaciones de onda media local (AM) que usted puede oír normalmente, sólo que la señal de onda corta viaja más distancia.

Normalmente se utiliza el modo AM (Amplitud Modulada) y la BLU o SSB (Banda Lateral Única o Single Side Band) tanto superior como inferior. También se usa el modo de telegrafía CW, el RTTY, la Frecuencia Modulada, la SSTV, entre otros tipos de modulación.

A pesar de lo que se piensa, no se necesita un super radio para oír estas transmisiones provenientes de todo el mundo. Todo lo que se necesita es una radio "normal" que pueda recibir la banda de onda corta. Tales radios pueden ser muy baratos. Para oír transmisiones Internacionales, puede usar simplemente la antena telescópica que se encuentra en muchas radios de FM. Sin embargo para la recepción de transmisiones internacionales más exóticas se debe conectar un trozo de cable ó alambre simple a la antena de su radio. Puede encontrarse mucha información al respecto en algunos programas en onda corta, en revistas como "ShortWave Magazine (SWM)", o a menudo en los grupos de noticias especializados, como "rec.radio.shortwave."

Tecnologias Celulares

.- Tecnologia CDMA

La multiplexación por división de código, acceso múltiple por división de código o CDMA (del inglés Code Division Multiple Access) es un término genérico para varios métodos de multiplexación o control de acceso al medio basados en la tecnología de espectro expandido.

CDMA emplea una tecnología de espectro expandido y un esquema especial de codificación, por el que a cada transmisor se le asigna un código único, escogido de forma que sea ortogonal respecto al del resto; el receptor capta las señales emitidas por todos los transmisores al mismo tiempo, pero gracias al esquema de codificación (que emplea códigos ortogonales entre sí) puede seleccionar la señal de interés si conoce el código empleado.

En CDMA, la señal se emite con un ancho de banda mucho mayor que el precisado por los datos a transmitir; por este motivo, la división por código es una técnica de acceso múltiple de espectro expandido. A los datos a transmitir simplemente se les aplica la función lógica XOR con el código de transmisión, que es único para ese usuario y se emite con un ancho de banda significativamente mayor que los datos.

Cada usuario de un sistema CDMA emplea un código de transmisión distinto (y único) para modular su señal. La selección del código a emplear para la modulación es vital para el buen desempeño de los sistemas CDMA, porque de él depende la selección de la señal de interés, que se hace por correlación cruzada de la señal captada con el código del usuario de interés, así como el rechazo del resto de señales y de las interferencias multi-path (producidas por los distintos rebotes de señal).



.- Tecnologia GSM

El Sistema Global para las Comunicaciones Móviles (GSM, proviene de "Groupe Special Mobile") es un sistema estándar, completamente definido, para la comunicación mediante teléfonos móviles que incorporan tecnología digital. Por ser digital cualquier cliente de GSM puede conectarse a través de su teléfono con su computador y puede hacer, enviar y recibir mensajes por e-mail, faxes, navegar por Internet, acceso seguro a la red informática de una compañía (LAN/Intranet), así como utilizar otras funciones digitales de transmisión de datos, incluyendo el Servicio de Mensajes Cortos (SMS) o mensajes de texto.


El sistema GSM basa su división de acceso al canal en combinar los siguientes modelos de reparto del espectro disponible. El primero es determinante a la hora de especificar la arquitectura de red, mientras que el resto se resuelve con circuitería en los terminales y antenas del operador:
Empleo de celdas contiguas a distintas frecuencias para repartir mejor las frecuencias (SDMA, Space Division Multiple Access o acceso múltiple por división del espacio); reutilización de frecuencias en celdas no contiguas;
División del tiempo en emisión y recepción mediante TDMA (Time Division Multiple Access, o acceso múltiple por división del tiempo);
Separación de bandas para emisión y recepción y subdivisión en canales radioeléctricos (protocolo FDMA, Frequency Division Multiple Access o acceso múltiple por división de la frecuencia);
Variación pseudoaleatoria de la frecuencia portadora de envío de terminal a red (FHMA, Frequency Hops Multiple Access o acceso múltiple por saltos de frecuencia).

La BSS, capa inferior de la arquitectura (terminal de usuario – BS – BSC), resuelve el problema del acceso del terminal al canal. La siguiente capa (NSS) se encargará, por un lado, del enrutamiento (MSC) y por otro de la identificación del abonado, tarificación y control de acceso (HLR, VLR y demás bases de datos del operador). Este párrafo con tantas siglas se explica a continuación con más calma, pero sirve de resumen general de la arquitectura de red empleada.

Por otra parte, las comunicaciones que se establezcan viajarán a través de distintos sistemas. Para simplificar, se denomina canal de comunicaciones a una comunicación establecida entre un sistema y otro, independientemente del método que realmente se emplee para establecer la conexión. En GSM hay definidos una serie de canales lógicos para el tráfico de llamadas, datos, señalización y demás propósitos.




.- Tecnologia UMTS

Sistema Universal de Telecomunicaciones Móviles (Universal Mobile Telecommunications System - UMTS) es una de las tecnologías usadas por los móviles de tercera generación (3G, también llamado W-CDMA), sucesora de GSM, debido a que la tecnología GSM propiamente dicha no podía seguir un camino evolutivo para llegar a brindar servicios considerados de Tercera Generación.

Está siendo desarrollado por 3GPP (3rd Generation Partnership Project), un proyecto común en el que colaboran: ETSI (Europa), ARIB/TIC (Japón), ANSI T-1 (USA), TTA (Korea), CWTS (China). Para alcanzar la aceptación global, 3GPP va introduciendo UMTS por fases y versiones anuales. La primera fue en 1999, describía transiciones desde redes GSM. En el 2000, se describió transiciones desde IS-95 y TDMA. ITU es la encargada de establecer el estándar para que todas las redes 3G sean compatibles.

UMTS ofrece los siguientes servicios:
.- Facilidad de uso y bajos costes: UMTS proporcionará servicios de uso fácil y adaptable para abordar las necesidades y preferencias de los usuarios, amplia gama de terminales para realizar un fácil acceso a los distintos servicios y bajo coste de los servicios para asegurar un mercado masivo. Como el roaming internacional o la capacidad de ofrecer diferentes formas de tarificación.

.- Nuevos y mejorados servicios: Los servicios de voz mantendrán una posición dominante durante varios años. Los usuarios exigirán a UMTS servicios de voz de alta calidad junto con servicios de datos e información. Las proyecciones muestran una base de abonados de servicios multimedia en fuerte crecimiento hacia el año 2010, lo que posibilita también servicios multimedia de alta calidad en áreas carentes de estas posibilidades en la red fija, como zonas de difícil acceso. Un ejemplo de esto es la posibilidad de conectarse a Internet desde el terminal móvil o desde el ordenador conectado a un terminal móvil con UMTS.


.- Acceso rápido: La principal ventaja de UMTS sobre la segunda generación móvil (2G), es la capacidad de soportar altas velocidades de transmisión de datos de hasta 144 kbit/s sobre vehículos a gran velocidad, 384 kbit/s en espacios abiertos de extrarradios y 7.2 Mbit/s con baja movilidad (interior de edificios). Esta capacidad sumada al soporte inherente del protocolo de Internet (IP), se combinan poderosamente para prestar servicios multimedia interactivos y nuevas aplicaciones de banda ancha, tales como servicios de video telefonía y video conferencia y transmisión de audio y video en tiempo real.




UMTS usa una comunicación terrestre basada en una interfaz de radio W-CDMA, conocida como UMTS Terrestrial Radio Access (UTRA). Soporta división de tiempo duplex (TDD) y división de frecuencia duplex (FDD). Ambos modelos ofrecen ratios de información de hasta 2 Mbps.

Una red UMTS se compone de los siguientes elementos:
.- Núcleo de red (Core Network). El núcleo de red incorpora funciones de transporte y de inteligencia. Las primeras soportan el transporte de la información de tráfico y señalización, incluida la conmutación. El encaminamiento reside en las funciones de inteligencia, que comprenden prestaciones como la lógica y el control de ciertos servicios ofrecidos a través de una serie de interfaces bien definidas; también incluyen la gestión de la movilidad. A través del núcleo de red, el UMTS se conecta con otras redes de telecomunicaciones, de forma que resulte posible la comunicación no sólo entre usuarios móviles UMTS, sino también con los que se encuentran conectados a otras redes.
.- Red de acceso radio (UTRAN). Desarrollada para obtener altas velocidades de transmisión. La red de acceso radio proporciona la conexión entre los terminales móviles y el Core Network. En UMTS recibe el nombre de UTRAN (Acceso Universal Radioeléctrico Terrestre) y se compone de una serie de subsistemas de redes de radio (RNS) que son el modo de comunicación de la red UMTS. Un RNS es responsable de los recursos y de la transmisión / recepción en un conjunto de celdas y esta compuesto de un RNC y uno o varios nodos B. Los nodos B son los elementos de la red que se corresponden con las estaciones base. El Controlador de la red de radio (RNC) es responsable de todo el control de los recursos lógicos de una BTS (Estación Base Transmisora).
.- UE (User Equipment). Se compone del terminal móvil y su módulo de identidad de servicios de usuario/suscriptor (USIM) equivalente a la tarjeta SIM del teléfono móvil.

Parte también de esta estructura serían las redes de transmisión empleadas para enlazar los diferentes elementos que la integran. Como los protocolos UU y IU.

Como funciona la Telefonia Movil

El término celular, el cual se refiere a la telefonía móvil, tiene como origen el hecho de que las estaciones base, las encargadas de enlazar por radio a los teléfonos portátiles con los controladores de estaciones base, se encuentran dispuestas en forma de una malla, formando así celdas o células en la disposición de un panal de abejas. Cada célula es típicamente de un tamaño de 10 millas cuadradas (unos 26Km2).
Esta idea permite la re-utilización de frecuencias a través de la ciudad, con lo que miles de personas pueden usar los teléfonos al mismo tiempo.

De esta forma, cada estación se sitúa en un nudo de estas celdas y tiene asignado un conjunto de frecuencias de recepción y de transmisión propio. Como existe un número limitado de frecuencias, a partir de esta disposición se pueden reutilizar las mismas frecuencias en otras celdas, siempre y cuando no sean adyacentes, y así evitar interferencias entre ellas.

Cada celda en un sistema análogo utiliza un séptimo de los canales de voz disponibles. Eso es, una celda, más las seis celdas que la rodean en un arreglo hexagonal, cada una utilizando un séptimo de los canales disponibles para que cada celda tenga un grupo único de frecuencias y no haya colisiones.

Un proveedor de servicio celular típicamente recibe 832 radio frecuencias para utilizar en una ciudad.

Cada teléfono celular utiliza dos frecuencias por llamada (dual), esto quiere decir que utiliza una frecuencia para hablar, y una segunda frecuencia aparte para escuchar, por lo que típicamente hay 395 canales de voz por portador de señal. (las 42 frecuencias restantes son utilizadas como canales de control).

Por lo tanto, cada celda tiene alrededor de 56 canales de voz disponibles.

En otras palabras, en cualquier celda, pueden hablar 56 personas en sus teléfonos celulares al mismo tiempo. Con la transmisión digital, el número de canales disponibles aumenta. Por ejemplo el sistema digital TDMA puede acarrear el triple de llamadas en cada celda, alrededor de 168 canales disponibles simultáneamente.

Los teléfonos celulares tienen adentro transmisores de bajo poder. Muchos teléfonos celulares tienen dos intensidades de señal: 0.6 watts y 3.0 watts (en comparación, la mayoría de los radios de banda civil transmiten a 4 watts.) La estación central también transmite a bajo poder. Los transmisores de bajo poder tienen dos ventajas.

Las transmisiones de la base central y de los teléfonos en la misma celda no salen de ésta. Por lo tanto, cada celda puede re-utilizar las mismas 56 frecuencias a través de la ciudad.

El consumo de energía del teléfono celular, que generalmente funciona con baterías, es relativamente bajo. Una baja energía significa baterías más pequeñas, lo cual hace posibles los teléfonos celulares.

La tecnología celular requiere un gran número de bases o estaciones en una ciudad de cualquier tamaño. Una ciudad grande puede llegar a tener cientos de torres. Cada ciudad necesita tener una oficina central la cual maneja todas las conexiones telefónicas a teléfonos convencionales, y controla todas las estaciones de la región.


Cuando el usuario desea realizar una llamada, el teléfono celular envía un mensaje a la torre solicitando una conexión a un número de teléfono específico. Si la torre dispone de los suficientes recursos para permitir la comunicación, un dispositivo llamado "switch" conecta la señal del teléfono celular a un canal el la red de telefonía pública. La llamada en este momento toma un canal inalámbrico así como un canal en la red de telefonía pública que se mantendrán abiertos hasta que la llamada se concluya.

En sistemas modernos los teléfonos esperan una señal de identificación del sistema (IDS) del canal de control cuando se encienden. El teléfono también transmite una propuesta de registro y la red mantiene unos datos acerca de su ubicación en una base de datos (de esta forma es que la MTSO sabe en que célula se encuentra si quiere timbrar su teléfono). A medida que se mueve entre células, el teléfono detecta los cambios en la señal, los registra y compara para con los de la nueva célula cuando cambia de canal. Si el teléfono no puede hallar canales para escuchar se sabe que está fuera de rango y muestra un mensaje de "sin servicio".

Telefonia Celular


La telefonía celular es un sistema de comunicación telefónica totalmente inalámbrica.
También conocida como telefonía móvil, está básicamente formada por dos partes grandes: los terminales, conocidos como teléfonos celulares, y una red de comunicaciones o red de telefonía celular que es a través de donde los mismos interactúan.

LAS GENERACIONES DE LA TELEFONIA INALAMBRICA

.- Primera generación (1G)
La 1G de la telefonia móvil hizo su aparición en 1979 y se caracterizó por se analógica y estrictamente para voz. La calidad de los enlaces era muy baja, tenían baja velocidad (2400 bauds). En cuanto a la transferencia entre celdas, era muy imprecisa ya que contaban con una baja capacidad (Basadas en FDMA, Frequency Division Multiple Access) y, además, la seguridad no existía. La tecnología predominante de esta generación es AMPS (Advanced Mobile Phone System).

.- Segunda generación (2G)
La 2G arribó hasta 1990 y a diferencia de la primera se caracterizó por ser digital.
EL sistema 2G utiliza protocolos de codificación más sofisticados y se emplea en los sistemas de telefonía celular actuales. Las tecnologías predominantes son: GSM (Global System por Mobile Communications); IS-136 (conocido también como TIA/EIA136 o ANSI-136) y CDMA (Code Division Multiple Access) y PDC (Personal Digital Communications).

Los protocolos empleados en los sistemas 2G soportan velocidades de información más altas por voz, pero limitados en comunicación de datos. Se pueden ofrecer servicios auxiliares, como datos, fax y SMS (Short Message Service). La mayoría de los protocolos de 2G ofrecen diferentes niveles de encripción. En Estados Unidos y otros países se le conoce a 2G como PCS (Personal Communication Services).

.- Generación 2.5 G
Muchos de los proveedores de servicios de telecomunicaciones se moverán a las redes 2.5G antes de entrar masivamente a la 3. La tecnología 2.5G es más rápida, y más económica para actualizar a 3G.

La generación 2.5G ofrece características extendidas, ya que cuenta con más capacidades adicionales que los sistemas 2G, como: GPRS (General Packet Radio System), HSCSD (High Speed Circuit Switched), EDGE (Enhanced Data Rates for Global Evolution), IS-136B e IS-95Bm ebtre otros.

.- Tercera generación 3G.
La 3G se caracteriza por contener a la convergencia de voz y datos con acceso inalámbrico a Internet; en otras palabras, es apta para aplicaciones multimedia y altas transmisiones de datos.

Los protocolos empleados en los sistemas 3G soportan altas velocidades de información y están enfocados para aplicaciones más allá de la voz como audio ( mp3), video en movimiento, videoconferencia y acceso rápido a Internet, sólo por nombrar algunos.

sábado, 17 de julio de 2010

Ventajas y Desventajas del Wi-Fi

Las redes Wi-Fi poseen una serie de ventajas, entre las cuales podemos destacar:

.- Al ser redes inalámbricas, la comodidad que ofrecen es muy superior a las redes cableadas porque cualquiera que tenga acceso a la red puede conectarse desde distintos puntos dentro de un rango suficientemente amplio de espacio.
.- Una vez configuradas, las redes Wi-Fi permiten el acceso de múltiples ordenadores sin ningún problema ni gasto en infraestructura, no así en la tecnología por cable.
.- La Wi-Fi Alliance asegura que la compatibilidad entre dispositivos con la marca Wi-Fi es total, con lo que en cualquier parte del mundo podremos utilizar la tecnología Wi-Fi con una compatibilidad total. Esto no ocurre, por ejemplo, en móviles.

Pero como red inalámbrica, la tecnología Wi-Fi presenta los problemas intrínsecos de cualquier tecnología inalámbrica. Algunos de ellos son:
.- Una de las desventajas que tiene el sistema Wi-Fi es una menor velocidad en comparación a una conexión con cables, debido a las interferencias y pérdidas de señal que el ambiente puede acarrear.
.- La desventaja fundamental de estas redes existe en el campo de la seguridad. Existen algunos programas capaces de capturar paquetes, trabajando con su tarjeta Wi-Fi en modo promiscuo, de forma que puedan calcular la contraseña de la red y de esta forma acceder a ella. Las claves de tipo WEP son relativamente fáciles de conseguir con este sistema. La alianza Wi-Fi arregló estos problemas sacando el estándar WPA y posteriormente WPA2, basados en el grupo de trabajo 802.11i. Las redes protegidas con WPA2 se consideran robustas dado que proporcionan muy buena seguridad. De todos modos muchas compañías no permiten a sus empleados tener una red inalámbrica[cita requerida]. Este problema se agrava si consideramos que no se puede controlar el área de cobertura de una conexión, de manera que un receptor se puede conectar desde fuera de la zona de recepción prevista (e.g. desde fuera de una oficina, desde una vivienda colindante).
.- Hay que señalar que esta tecnología no es compatible con otros tipos de conexiones sin cables como Bluetooth, GPRS, UMTS, etc.

Dispositivos que usan Wi-Fi

Existen varios dispositivos que permiten interconectar elementos Wi-Fi, de forma que puedan interactuar entre sí. Entre ellos destacan los routers, puntos de acceso, para la emisión de la señal Wi-Fi y las tarjetas receptoras para conectar a la computadora personal, ya sean internas (tarjetas PCI) o bien USB.

.- Los puntos de acceso funcionan a modo de emisor remoto, es decir, en lugares donde la señal Wi-Fi del router no tenga suficiente radio se colocan estos dispositivos, que reciben la señal bien por un cable UTP que se lleve hasta él o bien que capturan la señal débil y la amplifican (aunque para este último caso existen aparatos especializados que ofrecen un mayor rendimiento).
.- Los router son los que reciben la señal de la línea ofrecida por el operador de telefonía. Se encargan de todos los problemas inherentes a la recepción de la señal, incluidos el control de errores y extracción de la información, para que los diferentes niveles de red puedan trabajar. Además, el router efectúa el reparto de la señal, de forma muy eficiente.


.- Además de routers, hay otros dispositivos que pueden encargarse de la distribución de la señal, aunque no pueden encargarse de las tareas de recepción, como pueden ser hubs y switches. Estos dispositivos son mucho más sencillos que los routers, pero también su rendimiento en la red de área local es muy inferior
.- Los dispositivos de recepción abarcan tres tipos mayoritarios: tarjetas PCI, tarjetas  
Tarjeta USB para Wi-Fi. PCMCIA y tarjetas USB:
.- Las tarjetas PCMCIA son un modelo que se utilizó mucho en los primeros ordenadores portátiles, aunque están cayendo en desuso, debido a la integración de tarjeta inalámbricas internas en estos ordenadores. La mayor parte de estas tarjetas solo son capaces de llegar hasta la tecnología B de Wi-Fi, no permitiendo por tanto disfrutar de una velocidad de transmisión demasiado elevada
.- Las tarjetas USB para Wi-Fi son el tipo de tarjeta más común que existe y más sencillo de conectar a un pc, ya sea de sobremesa o portátil, haciendo uso de todas las ventajas que tiene la tecnología USB. Además, algunas ya ofrecen la posibilidad de utilizar la llamada tecnología PreN, que aún no está estandarizada.
.- También existen impresoras, cámaras Web y otros periféricos que funcionan con la tecnología Wi-Fi, permitiendo un ahorro de mucho cableado en las instalaciones de redes.

Wi-Fi


Cuando hablamos de WIFI nos referimos a una de las tecnologías de comunicación inálambrica mediante ondas creado para redes locales inalámbricas, pero que también se utiliza para acceso a internet. WIFI, también llamada WLAN (wireless lan, red inalámbrica) o estándar IEEE 802.11. 


Existen diversos tipos de Wi-Fi, basado cada uno de ellos en un estándar IEEE 802.11 aprobado. Son los siguientes:
.- Los estándares IEEE 802.11b, IEEE 802.11g e IEEE 802.11n disfrutan de una aceptación internacional debido a que la banda de 2.4 GHz está disponible casi universalmente, con una velocidad de hasta 11 Mbps , 54 Mbps y 300 Mbps, respectivamente.
.- En la actualidad ya se maneja también el estándar IEEE 802.11a, conocido como WIFI 5, que opera en la banda de 5 GHz y que disfruta de una operatividad con canales relativamente limpios. La banda de 5 GHz ha sido recientemente habilitada y, además, no existen otras tecnologías (Bluetooth, microondas, ZigBee, WUSB) que la estén utilizando, por lo tanto existen muy pocas interferencias. Su alcance es algo menor que el de los estándares que trabajan a 2.4 GHz (aproximadamente un 10%), debido a que la frecuencia es mayor (a mayor frecuencia, menor alcance).
.- Un primer borrador del estándar IEEE 802.11n que trabaja a 2.4 GHz y a una velocidad de 108 Mbps. Sin embargo, el estándar 802.11g es capaz de alcanzar ya transferencias a 108 Mbps, gracias a diversas técnicas de aceleramiento. Actualmente existen ciertos dispositivos que permiten utilizar esta tecnología, denominados Pre-N.

Uno de los problemas más graves a los cuales se enfrenta actualmente la tecnología Wi-Fi es la progresiva saturación del espectro radioeléctrico, debido a la masificación de usuarios, esto afecta especialmente en las conexiones de larga distancia (mayor de 100 metros). En realidad Wi-Fi está diseñado para conectar ordenadores a la red a distancias reducidas, cualquier uso de mayor alcance está expuesto a un excesivo riesgo de interferencias.

Un muy elevado porcentaje de redes son instalados sin tener en consideración la seguridad convirtiendo así sus redes en redes abiertas (o completamente vulnerables a los crackers), sin proteger la información que por ellas circulan.

Existen varias alternativas para garantizar la seguridad de estas redes. Las más comunes son la utilización de protocolos de cifrado de datos para los estándares Wi-Fi como el WEP, el WPA, o el WPA2 que se encargan de codificar la información transmitida para proteger su confidencialidad, proporcionados por los propios dispositivos inalámbricos. La mayoría de las formas son las siguientes:
.- WEP, cifra los datos en su red de forma que sólo el destinatario deseado pueda acceder a ellos. Los cifrados de 64 y 128 bits son dos niveles de seguridad WEP. WEP codifica los datos mediante una “clave” de cifrado antes de enviarlo al aire. Este tipo de cifrado no está muy recomendado, debido a las grandes vulnerabilidades que presenta, ya que cualquier cracker puede conseguir sacar la clave.
.- WPA: presenta mejoras como generación dinámica de la clave de acceso. Las claves se insertan como de dígitos alfanuméricos, sin restricción de longitud
.- IPSEC (túneles IP) en el caso de las VPN y el conjunto de estándares IEEE 802.1X, que permite la autenticación y autorización de usuarios.
.- Filtrado de MAC, de manera que sólo se permite acceso a la red a aquellos dispositivos autorizados. Es lo más recomendable si solo se va a usar con los mismos equipos, y si son pocos.
.- Ocultación del punto de acceso: se puede ocultar el punto de acceso (Router) de manera que sea invisible a otros usuarios.
.- El protocolo de seguridad llamado WPA2 (estándar 802.11i), que es una mejora relativa a WPA. En principio es el protocolo de seguridad más seguro para Wi-Fi en este momento. Sin embargo requieren hardware y software compatibles, ya que los antiguos no lo son.

Sin embargo, no existe ninguna alternativa totalmente fiable, ya que todas ellas son susceptibles de ser vulneradas. 

El Bluetooth


Es el protocolo de comunicaciones con especificación industrial para Redes Inalámbricas de Área Personal (WPANs) que posibilita la transmisión de voz y datos entre diferentes dispositivos, diseñado especialmente para dispositivos de bajo consumo, con una cobertura baja y basados en transceptores de bajo coste.

Gracias a este protocolo, los dispositivos que lo implementan pueden comunicarse entre ellos cuando se encuentran dentro de su alcance. Las comunicaciones se realizan por radiofrecuencia de forma que los dispositivos no tienen que estar alineados y pueden incluso estar en habitaciones separadas si la potencia de transmisión lo permite. Estos dispositivos se clasifican como "Clase 1", "Clase 2" o "Clase 3" en referencia a su potencia de transmisión, siendo totalmente compatibles los dispositivos de una clase con los de las otras.



En la mayoría de los casos, la cobertura efectiva de un dispositivo de clase 2 se extiende cuando se conecta a un transceptor de clase 1. Esto es así gracias a la mayor sensibilidad y potencia de transmisión del dispositivo de clase 1, es decir, la mayor potencia de transmisión del dispositivo de clase 1 permite que la señal llegue con energía suficiente hasta el de clase 2. Por otra parte la mayor sensibilidad del dispositivo de clase 1 permite recibir la señal del otro pese a ser más débil.

La especificación de Bluetooth define un canal de comunicación de máximo 720 kb/s (1 Mbps de capacidad bruta).

La frecuencia de radio con la que trabaja está en el rango de 2,4 a 2,48 GHz con amplio espectro y saltos de frecuencia con posibilidad de transmitir en Full Duplex con un máximo de 1600 saltos/s. Los saltos de frecuencia se dan entre un total de 79 frecuencias con intervalos de 1Mhz; esto permite dar seguridad y robustez.

La potencia de salida para transmitir a una distancia máxima de 10 metros es de 0 dBm (1 mW), mientras que la versión de largo alcance transmite entre 20 y 30 dBm (entre 100 mW y 1 W).

Para lograr alcanzar el objetivo de bajo consumo y bajo costo, se ideó una solución que se puede implementar en un solo chip utilizando circuitos CMOS. De esta manera, se logró crear una solución de 9×9 mm y que consume aproximadamente 97% menos energía que un teléfono celular común.

El protocolo de banda base (canales simples por línea) combina conmutación de circuitos y paquetes. Para asegurar que los paquetes no lleguen fuera de orden, los slots pueden ser reservados por paquetes síncronos, un salto diferente de señal es usado para cada paquete. Por otro lado, la conmutación de circuitos puede ser asíncrona o síncrona. Tres canales de datos síncronos (voz), o un canal de datos síncrono y uno asíncrono, pueden ser soportados en un solo canal. Cada canal de voz puede soportar una tasa de transferencia de 64 kb/s en cada sentido, la cual es suficientemente adecuada para la transmisión de voz. Un canal asíncrono puede transmitir como mucho 721 kb/s en una dirección y 56 kb/s en la dirección opuesta, sin embargo, para una conexión síncrona es posible soportar 432,6 kb/s en ambas direcciones si el enlace es simétrico.

http://es.wikipedia.org/wiki/Bluetooth

Como funciona el GPS









Desde el mismo momento que el receptor GPS detecta una señal de radiofrecuencia transmitida por un satélite desde su órbita, se genera una esfera virtual o imaginaria que envuelve al satélite. El propio satélite actuará como centro de la esfera cuya superficie se extenderá hasta el punto o lugar donde se encuentre situada la antena del receptor; por tanto, el radio de la esfera será igual a la distancia que separa al satélite del receptor. A partir de ese instante el receptor GPS medirá las distancias que lo separan como mínimo de dos satélites más. Para ello tendrá que calcular el tiempo que demora cada señal en viajar desde los satélites hasta el punto donde éste se encuentra situado y realizar los correspondientes cálculos matemáticos.

Todas las señales de radiofrecuencias están formadas por ondas electromagnéticas que se desplazan por el espacio de forma concéntrica a partir de la antena transmisora, de forma similar a como lo hacen las ondas que se generan en la superficie del agua cuando tiramos una piedra. Debido a esa propiedad las señales de radio se pueden captar desde cualquier punto situado alrededor de una antena transmisora. Las ondas de radio viajan a la velocidad de la luz, es decir, 300 mil kilómetros por segundo (186 mil millas por segundo) medida en el vacío, por lo que es posible calcular la distancia existente entre un transmisor y un receptor si se conoce el tiempo que demora la señal en viajar desde un punto hasta el otro.


Para medir el momento a partir del cual el satélite emite la señal y el receptor GPS la recibe, es necesario que tanto el reloj del satélite como el del receptor estén perfectamente sincronizados. El satélite utiliza un reloj atómico de cesio, extremadamente exacto, pero el receptor GPS posee uno normal de cuarzo, no tan preciso. Para sincronizar con exactitud el reloj del receptor GPS, el satélite emite cada cierto tiempo una señal digital o patrón de control junto con la señal de radiofrecuencia. Esa señal de control llega siempre al receptor GPS con más retraso que la señal normal de radiofrecuencia. El retraso entre ambas señales será igual al tiempo que demora la señal de radiofrecuencia en viajar del satélite al receptor GPS.

La distancia existente entre cada satélite y el receptor GPS la calcula el propio receptor realizando diferentes operaciones matemáticas. Para hacer este cálculo el receptor GPS multiplica el tiempo de retraso de la señal de control por el valor de la velocidad de la luz. Si la señal ha viajado en línea recta, sin que la haya afectado ninguna interferencia por el camino, el resultado matemático será la distancia exacta que separa al receptor del satélite.

Las ondas de radio que recorren la Tierra lógicamente no viajan por el vacío sino que se desplazan a través de la masa gaseosa que compone la atmósfera; por tanto, su velocidad no será exactamente igual a la de la luz, sino un poco más lenta. Existen también otros factores que pueden influir también algo en el desplazamiento de la señal, como son las condiciones atmosféricas locales, el ángulo existente entre el satélite y el receptor GPS, etc. Para corregir los efectos de todas esas variables, el receptor se sirve de complejos modelos matemáticos que guarda en su memoria. Los resultados de los cálculos los complementa después con la información adicional que recibe también del satélite, lo que permite mostrar la posición con mayor exactitud.

http://es.wikipedia.org/wiki/Sistema_de_posicionamiento_global#Funcionamiento

DGPS



El DGPS (Differential GPS), es un sistema que proporciona a los receptores de GPS correcciones de los datos recibidos de los satélites GPS, con el fin de proporcionar una mayor precisión en la posición calculada.

Se concibió fundamentalmente debido la introducción de la disponibilidad selectiva.


El fundamento radica en el hecho de que los errores producidos por el sistema GPS afectan por igual (o de forma muy similar) a los receptores situados próximos entre sí. Los errores están fuertemente correlacionados en los receptores próximos.

Un receptor GPS fijo en tierra (referencia) que conoce exactamente su posición basándose en otras técnicas, recibe la posición dada por el sistema GPS, y puede calcular los errores producidos por el sistema GPS, comparándola con la suya, conocida de antemano. Este receptor transmite la corrección de errores a los receptores próximos a él, y así estos pueden, a su vez, corregir también los errores producidos por el sistema dentro del área de cobertura de transmisión de señales del equipo GPS de referencia.

En suma, la estructura DGPS quedaría de la siguiente manera:
Estación monitorizada (referencia), que conoce su posición con una precisión muy alta. Esta estación está compuesta por:
Un receptor GPS.
Un microprocesador, para calcular los errores del sistema GPS y para generar la estructura del mensaje que se envía a los receptores.
Transmisor, para establecer un enlace de datos unidireccional hacia los receptores de los usuarios finales.
Equipo de usuario, compuesto por un receptor DGPS (GPS + receptor del enlace de datos desde la estación monitorizada).

Existen varias formas de obtener las correcciones DGPS. Las más usadas son:
Recibidas por radio, a través de algún canal preparado para ello, como el RDS en una emisora de FM.
Descargadas de Internet, o con una conexión inalámbrica.
Proporcionadas por algún sistema de satélites diseñado para tal efecto. En Estados Unidos existe el WAAS, en Europa el EGNOS y en Japón el MSAS, todos compatibles entre sí.

En los mensajes que se envían a los receptores próximos se pueden incluir dos tipos de correcciones:
Una corrección directamente aplicada a la posición. Esto tiene el inconveniente de que tanto el usuario como la estación monitora deberán emplear los mismos satélites, pues las correcciones se basan en esos mismos satélites.
Una corrección aplicada a las pseudodistancias de cada uno de los satélites visibles. En este caso el usuario podrá hacer la corrección con los 4 satélites de mejor relación señal-ruido. Esta corrección es más flexible.

El error producido por la disponibilidad selectiva varía incluso más rápido que la velocidad de transmisión de los datos. Por ello, junto con el mensaje que se envía de correcciones, también se envía el tiempo de validez de las correcciones y sus tendencias. Por tanto, el receptor deberá hacer algún tipo de interpolación para corregir los errores producidos.

Si se deseara incrementar el área de cobertura de correcciones DGPS y, al mismo tiempo, minimizar el número de receptores de referencia fijos, será necesario modelar las variaciones espaciales y temporales de los errores. En tal caso estaríamos hablando del GPS diferencial de área amplia.

Con el DGPS se pueden corregir en parte los errores debidos a:
Disponibilidad selectiva
Propagación por la ionosfera - troposfera.
Errores en la posición del satélite
Errores producidos por problemas en el reloj del satélite.

Para que las correcciones DGPS sean válidas, el receptor tiene que estar relativamente cerca de alguna estación DGPS; generalmente, a menos de 1000 km. Las precisiones que manejan los receptores diferenciales son centimétricas, por lo que pueden ser utilizados en ingeniería.

http://es.wikipedia.org/wiki/Sistema_de_posicionamiento_global#DGPS_o_GPS_diferencial

sábado, 26 de junio de 2010

GPS


El GPS (Global Positioning System: sistema de posicionamiento mundial) o NAVSTAR-GPS1 es un sistema global de navegación por satélite (GNSS) que permite determinar en todo el mundo la posición de un objeto, una persona, un vehículo o una nave, con una precisión hasta de centímetros (si se utiliza GPS diferencial), aunque lo habitual son unos pocos metros de precisión. Aunque su invención se atribuye a los gobiernos francés y belga, el sistema fue desarrollado, instalado y actualmente operado por el Departamento de Defensa de los Estados Unidos.

El GPS funciona mediante una red de 32 satélites (28 operativos y 4 de respaldo) en órbita sobre el globo, a 20 200 km, con trayectorias sincronizadas para cubrir toda la superficie de la Tierra. Cuando se desea determinar la posición, el receptor que se utiliza para ello localiza automáticamente como mínimo tres satélites de la red, de los que recibe unas señales indicando la posición y el reloj de cada uno de ellos. Con base en estas señales, el aparato sincroniza el reloj del GPS y calcula el retraso de las señales (es decir, la distancia al satélite). Por "triangulación" (método de trilateración inversa), calcula la posición en que éste se encuentra. En el caso del GPS, la triangulación —a diferencia del caso 2-D que consiste en averiguar el ángulo respecto de puntos conocidos—, se basa en determinar la distancia de cada satélite respecto al punto de medición. Conocidas las distancias, se determina fácilmente la propia posición relativa respecto a los tres satélites. Conociendo además las coordenadas o posición de cada uno de ellos por la señal que emiten, se obtiene la posición absoluta o coordenadas reales del punto de medición. También se consigue una exactitud extrema en el reloj del GPS, similar a la de los relojes atómicos que llevan a bordo cada uno de los satélites.

La antigua Unión Soviética construyó un sistema similar llamado GLONASS, ahora gestionado por la Federación Rusa.

Actualmente la Unión Europea está desarrollando su propio sistema de posicionamiento por satélite, denominado Galileo.


El Sistema Global de Navegación por Satélite lo componen:

.- Sistema de satélites: Está formado por 24 unidades con trayectorias sincronizadas para cubrir toda la superficie del globo terráqueo. Más concretamente, repartidos en 6 planos orbitales de 4 satélites cada uno. La energía eléctrica que requieren para su funcionamiento la adquieren a partir de dos paneles compuestos de celdas solares adosados a sus costados.
.- Estaciones terrestres: Envían información de control a los satélites para controlar las órbitas y realizar el mantenimiento de toda la constelación.

.- Terminales receptores: Indican la posición en la que están; conocidas también como unidades GPS, son las que podemos adquirir en las tiendas especializadas.

http://es.wikipedia.org/wiki/Sistema_de_posicionamiento_global

Ganancia de la Antena Parabolica

Para el cálculo de ganancias en antenas parabólicas han de quedar claros los siguientes conceptos:

.- La ganancia de una antena parabólica indica la cantidad de señal captada que se concentra en el alimentador.
.- La ganancia depende del diámetro del plato, de la exactitud geométrica del reflector y de la frecuencia de operación. Si el diámetro aumenta, la ganancia también, porque se concentra mayor energía en el foco.
.- La exactitud geométrica está relacionada con la precisión con la que se ha fabricado el reflector de la antena parabólica.
.- La antena debe ser parabólica de modo que exista uno y sólo un foco y que en él se debe colocar el alimentador.
.- Cualquier desviación de la curva parabólica hará que toda la energía que llegue al reflector no se refleje en el foco, sino en un punto por delante o por detrás de éste, con lo cual perderemos energía. Lo propio para las irregularidades mecánicas en la superficie del reflector.
.- Un golpe o abolladura presente en el plato hará que las señales reflejadas no se desvíen correctamente hacia el foco disminuyendo la energía electromagnética efectiva en el alimentador.
.- Cuanto mayor sea la frecuencia, menor deberá ser el diámetro del reflector. Así, una señal para 5.8 GHz necesita un reflector de menor diámetro que otra señal en 2.4GHz. La ganancia del reflector se expresa en dB y se la define con respecto a una antena isotrópica (antena de longitud omnidireccional que se considera de ganancia unitaria); es decir, en relación a una antena que reciba exactamente lo mismo en todas direcciones.

.- G = (Pi^2)*n*(D/L)^2

G = Ganancia

n = eficiencia global

D = Diametro del plato

L = longitud de la onda

L = C/f

C = Velocidad de la Luz

f = frecuencia

Antena Parabolica.



La antena parabólica es un tipo de antena que se caracteriza por llevar un reflector parabólico. Su nombre proviene de la similitud a la parábola generada al cortar un cono recto con un plano paralelo a la directriz.

Las antenas parabólicas pueden ser usadas como antenas transmisoras o como antenas receptoras. En las antenas parabólicas transmisoras el reflector parabólico refleja la onda electromagnética generada por un dispositivo radiante que se encuentra ubicado en el foco del reflector parabólico, y los frentes de ondas que genera salen de este reflector en forma más coherente que otro tipo de antenas, mientras que en las antenas receptoras el reflector parabólico concentra la onda incidente en su foco donde también se encuentra un detector. Normalmente estas antenas en redes de microondas operan en forma full duplex, es decir, trasmiten y reciben simultáneamente


Las antenas parabólicas suelen ser utilizadas a frecuencias altas y tienen una ganancia elevada, entre los sistemas que utilizan antenas parabólicas se destaca el Satélite de comunicaciones.

Atendiendo a la superficie reflectora, pueden diferenciarse varios tipos de antenas parabólicas, los más extendidos son los siguientes:
La antena parabólica de foco centrado o primario, que se caracteriza por tener el reflector parabólico centrado respecto del foco.
La antena parabólica de foco desplazado u offset, que se caracteriza por tener el reflector parabólico desplazado respecto del foco. Son más eficientes que las parabólicas de foco centrado, porque el alimentador no hace sombra sobre la superficie reflectora.
La antena parabólica Cassegrain, que se caracteriza por llevar un segundo reflector cerca de su foco, el cual refleja la onda radiada desde el dispositivo radiante hacia el reflector en las antenas transmisoras, o refleja la onda recibida desde el reflector hacia el dispositivo detector en las antenas receptoras.

 
Antenas de foco primario

Estas antenas también son llamadas antenas paraboidales. La superficie de la antena es una parábola de revolución con el alimentador en el foco.
"antenas de conducción radiofónicas de amplitud electromagnética" conocida por sus siglas (CRAMEL) una antena de ese tipo es capaz de irradiar una magnitud de onda de 500khz a través de un satélite guiado y su transmisor parabólico consta de tres reflectores, esta antena apenas fue diseñada en el 2005 por el científico electrónico danés Hamlent.


Satelite.


Un satélite es cualquier objeto que orbita alrededor de otro, que se denomina principal. Los satélites artificiales son naves espaciales fabricadas en la Tierra y enviadas en un vehículo de lanzamiento, un tipo de cohete que envía una carga útil al espacio exterior. Los satélites artificiales pueden orbitar alrededor de lunas, cometas, asteroides, planetas, estrellas o incluso galaxias. Tras su vida útil, los satélites artificiales pueden quedar orbitando como basura espacial.


Tipos de satélite (por tipo de misión)


.- Armas antisatélite, también denominados como satélites asesinos, son satélites diseñados para destruir satélites enemigos, otras armas orbitales y objetivos. Algunos están armados con proyectiles cinéticos, mientras que otros usan armas de energía o partículas para destruir satélites, misiles balísticos o MIRV.
.- Satélites astronómicos, son satélites utilizados para la observación de planetas, galaxias y otros objetos astronómicos.
.- Biosatélites, diseñados para llevar organismos vivos, generalmente con propósitos de experimentos científicos.
.- Satélites de comunicaciones, son los empleados para realizar telecomunicación. Suelen utilizar órbitas geosíncronas, órbitas de Molniya u órbitas bajas terrestres.
.- Satélites miniaturizados, también denominados como minisatélites, microsatélites, nanosatélites o picosatélites, son característicos por sus dimensiones y pesos reducidos.
.- Satélites de navegación, utilizan señales para conocer la posición exacta del receptor en la tierra.
.- Satélites de reconocimiento, denominados popularmente como satélites espías, son satélites de observación o comunicaciones utilizados por militares u organizaciones de inteligencia. La mayoría de los gobiernos mantienen la información de sus satélites como secreta.
.- Satélites de observación terrestre, son utilizados para la observación del medio ambiente, meteorología, cartografía sin fines militares.
.- Satélites de energía solar, son una propuesta para satélites en órbita excéntrica que envíen la energía solar recogida hasta antenas en la Tierra como una fuente de alimentación.
.- Estaciones espaciales, son estructuras diseñadas para que los seres humanos puedan vivir en el espacio exterior. Una estación espacial se distingue de otras naves espaciales tripuladas en que no dispone de propulsión o capacidad de aterrizar, utilizando otros vehículos como transporte hacia y desde la estación.
.- Satélites meteorológicos, son satélites utilizados principalmente para registrar el tiempo atmosférico y el clima de la Tierra.

Es posible clasificarlos por tipos de órbitas satelitales GEO Orbita Geosestacionaria, esto significa que rota igual que la tierra a una altura de 36,000 km sobre el ecuador, por lo tanto tiene un periodo orbital de 24 horas y muestra un retardo entre 700 y 800 milisegundo, este tipo de satélites son utilizados para brindar servicios de voz, datos e Internet a empresas privadas y de gobiernos, esta enfocada a localidades donde no llegan otro tipo de tecnologías y con el objetivo de cubrir necesidades de comunicación, es empleado en escuelas publicas y negocios rurales. MEO Es de órbita mediana rota de 10.000 a 20.000 km y tiene un periodo orbital de 10 a 14 horas, este es utilizado por empresas celulares con la llamada tecnología GPS. LEO Son satélites de órbita baja están a una altura de 700 a 1400 km y tienen un periodo orbital de 80 a 150 minutos.


 Tipos de satélite (por tipo de órbita)

Clasificación por centro
.- Órbita galactocéntrica: órbita alrededor del centro de una galaxia. El Sol terrestre sigue éste tipo de órbita alrededor del centro galáctico de la Vía Láctea.
.- Órbita heliocéntrica: una órbita alrededor del Sol. En el Sistema Solar, los planetas, cometas y asteroides siguen esa órbita, además de satélites artificiales y basura espacial.
.- Órbita geocéntrica: una órbita alrededor de la Tierra. Existen aproximadamente 2.465 satélites artificiales orbitando alrededor de la Tierra.
.- Órbita areocéntrica: una órbita alrededor de Marte.


Clasificación por altitud
.- Órbita baja terrestre (LEO): una órbita geocéntrica a una altitud de 0 a 2.000 km
.- Órbita media terrestre (MEO): una órbita geocéntrica con una altitud entre 2.000 km y hasta el límite de la órbita geosíncrona de 35.786 km. También se la conoce como órbita circular intermedia.
.- Órbita alta terrestre (HEO): una órbita geocéntrica por encima de la órbita geosíncrona de 35.786 km; también conocida como órbita muy excéntrica u órbita muy elíptica.

Clasificación por inclinación
.- Órbita inclinada: una órbita cuya inclinación orbital no es cero. 
.- Órbita polar: una órbita que pasa por encima de los polos del planeta. Por tanto, tiene una inclinación de 90º o aproximada.
.- Órbita polar heliosíncrona: una órbita casi polar que pasa por el ecuador terrestre a la misma hora local en cada pasada.

Clasificación por excentricidad
.- Órbita circular: una órbita cuya excentricidad es cero y su trayectoria es un círculo. 
.- Órbita de transferencia de Hohmann: una maniobra orbital que traslada a una nave desde una órbita circular a otra.
.- Órbita elíptica: una órbita cuya excentricidad es mayor que cero pero menor que uno y su trayectoria tiene forma de elipse. 
.- Órbita de transferencia geosíncrona: una órbita elíptica cuyo perigeo es la altitud de una órbita baja terrestre y su apogeo es la de una órbita geosíncrona.
.- Órbita de transferencia geoestacionaria: una órbita elíptica cuyo perigeo es la altitud de una órbita baja terrestre y su apogeo es la de una órbita geoestacionaria.
.- Órbita de Molniya: una órbita muy excéntrica con una inclinación de 63,4º y un período orbital igual a la mitad de un día sideral (unas doce horas).
.- Órbita tundra: una órbita muy excéntrica con una inclinación de 63,4º y un período orbital igual a un día sideral (unas 24 horas).
.- Órbita hiperbólica: una órbita cuya excentricidad es mayor que uno. En tales órbitas, la nave escapa de la atracción gravitacional y continua su vuelo indefinidamente.
.- Órbita parabólica: una órbita cuya excentricidad es igual a uno. En estas órbitas, la velocidad es igual a la velocidad de escape. 
.- Órbita de escape: una órbita parabólica de velocidad alta donde el objeto se aleja del planeta.
.- Órbita de captura: una órbita parabólica de velocidad alta donde el objeto se acerca del planeta.

Clasificación por sincronía
.- Órbita síncrona: una órbita donde el satélite tiene un periodo orbital igual al periodo de rotación del objeto principal y en la misma dirección. Desde el suelo, un satélite trazaría una analema en el cielo.
.- Órbita semisíncrona: una órbita a una altitud de 12.544 km aproximadamente y un periodo orbital de unas 12 horas.
.- Órbita geosíncrona: una órbita a una altitud de 35.768 km. Estos satélites trazarían una analema en el cielo. 
.- Órbita geoestacionaria: una órbita geosíncrona con inclinación cero. Para un observador en el suelo, el satélite parecería un punto fijo en el cielo.
.- Órbita cementerio: una órbita a unos cientos de kilómetros por encima de la geosíncrona donde se trasladan los satélites cuando acaba su vida útil.
.- Órbita areosíncrona: una órbita síncrona alrededor del planeta Marte con un periodo orbital igual al día sideral de Marte, 24,6229 horas.
.- Órbita areoestacionaria: una órbita areosíncrona circular sobre el plano ecuatorial a unos 17.000 km de altitud. Similar a la órbita geoestacionaria pero en Marte.
.- Órbita heliosíncrona: una órbita heliocéntrica sobre el Sol donde el periodo orbital del satélite es igual al periodo de rotación del Sol. Se sitúa a aproximadamente 0,1628 UA.

Otras órbitas
.- Órbita de herradura: una órbita en la que un observador parecer ver que órbita sobre un planeta pero en realidad coorbita con el planeta. Un ejemplo es el asteroide (3753) Cruithne.