Powered By Blogger

viernes, 7 de enero de 2011

Frecuencias usadas por los satelites

Cuando se trata de satélites de comunicaciones, la porción del espectro radioeléctrico que utilizarán lo determina prácticamente todo: la capacidad del sistema, la potencia y el precio. Las longitudes de onda diferentes poseen propiedades diferentes. Las longitudes de onda largas pueden recorrer grandes distancias y atravesar obstáculos. Las grandes longitudes de onda pueden rodear edificios o atravesar montañas, pero cuanto mayor sea la frecuencia (y por tanto, menor la longitud de onda), más fácilmente pueden detenerse las ondas.

Cuando las frecuencias son lo suficientemente altas (hablamos de decenas de gigahertz), las ondas pueden ser detenidas por objetos como las hojas o las gotas de lluvia, provocando el fenómeno denominado "rain fade". Para superar este fenómeno se necesita bastante más potencia, lo que implica transmisores más potentes o antenas más enfocadas, que provocan que el precio del satélite aumente.

La ventaja de las frecuencias elevadas (las bandas Ku y Ka) es que permiten a los transmisores enviar más información por segundo. Esto es debido a que la información se deposita generalmente en cierta parte de la onda: la cresta, el valle, el principio o el fin. El compromiso de las altas frecuencias es que pueden transportar más información, pero necesitan más potencia para evitar los bloqueos, mayores antenas y equipos más caros. Concretamente, las bandas más utilizadas en los sistemas de satélites son:

Banda L.
Rango de frecuencias: 1.53-2.7 GHz.
Ventajas: grandes longitudes de onda pueden penetrar a través de las estructuras terrestres; precisan transmisores de menor potencia.
Inconvenientes: poca capacidad de transmisión de datos.

Banda Ku.
Rango de frecuencias: en recepción 11.7-12.7 GHz, y en transmisión 14-17.8 GHz.
Ventajas: longitudes de onda medianas que traspasan la mayoría de los obstáculos y transportan una gran cantidad de datos.
Inconvenientes: la mayoría de las ubicaciones están adjudicadas.

Banda Ka.
Rango de frecuencias: 18-31 GHz.
Ventajas: amplio espectro de ubicaciones disponible; las longitudes de onda transportan grandes cantidades de datos.
Inconvenientes: son necesarios transmisores muy potentes; sensible a interferencias ambientales.

Banda C.
Rango de frecuencias: 3.4-6.4 GHz.
Ventajas: Es menos suceptible a efectos climaticos como la lluvia comparado con la banda KU y Ka
Inconvenientes: Los costos por equipamiento es un poco mas elevado que la Banda Ku;




últiple acceso esta definido como una técnica donde más de un par de estaciones terrenas pueden simultáneamente usar un transponder del satélite.

La mayoría de las aplicaciones de comunicaciones por satélite involucran un número grande de estaciones terrenas comunicándose una con la otra a través de un canal satelital (de voz, datos o vídeo). El concepto de múltiple acceso involucra sistemas que hacen posible que múltiples estaciones terrenas interconecten sus enlaces de comunicaciones a través de un simple transponder. Esas portadoras pueden ser moduladas por canales simples o múltiples que incluyen señales de voz, datos o vídeo. Existen muchas implementaciones específicas de sistemas de múltiple acceso, pero existen solo tres tipos de sistemas fundamentales:
Frecuency-división multiple access (FDMA)

El acceso múltiple por división de frecuencias. Este tipo de sistemas canalizan el transponedor usando múltiples portadoras, donde a cada portadora le asigna un par de frecuencias. El ancho de banda total utilizado dependerá del número total de portadoras. Existen dos variantes de esta técnica: SCPC (Single Channel Per Carrier) y MCPC (Multiple Channel Per Carrier).
Time-division multiple access (TDMA)

El Acceso múltiple por división de tiempo está caracterizado por el uso de ranuras de tiempo asignadas a cada portadora. Existen otras variantes a este método, el más conocido es DAMA (Demand Access Multiple Access, el cual asigna ranuras de tiempo de acuerdo a la demanda del canal. Una de las ventajas del TDMA con respecto a los otros es que optimiza del ancho de banda.
Code-division multiple access (CDMA)

El Acceso múltiple por división de código mejor conocido como Spread Spectrum (Espectro esparcido) es una técnica de modulación que convierten la señal en banda base en una señal modulada con un espectro de ancho de banda que cubre o se esparce sobre una banda de magnitud más grande que la que normalmente se necesita para transmitir la señal en banda base por sí misma. Es una técnica muy robusta en contra de la interferencia en el espectro común de radio y ha sido usado muy ampliamente en aplicaciones militares. Esta técnica se aplica en comunicaciones vía satélite particularmente para transmisión de datos a bajas velocidades.

Tipos de conexión:
Conexión unidireccional: como solo podemos recibir datos mediante el satélite necesitamos un módem convencional para enviar los datos al ISP, a continuación la información requerida nos será enviada a través del satélite, en la siguiente imagen se ve como funciona este sistema.

Conexión bidireccional1 : En esta conexión si es posible realizar tanto el envío como la recepción de datos a través del satélite. Véase canal de retorno.

http://es.wikipedia.org/wiki/Internet_por_satélite

Internet por Satelite

Internet por satélite o conexión a Internet vía satélite es un método de conexión a Internet utilizando como medio de enlace un satélite. Es un sistema recomendable de acceso en aquellos lugares donde no llega el cable o la telefonía, como zonas rurales o alejadas. En una ciudad constituye un sistema alternativo a los usuales, para evitar cuellos de botella debido a la saturación de las líneas convencionales y un ancho de banda limitado.

Las señales llegan al satélite desde la estación en tierra por el "haz ascendente" y se envían a la tierra desde el satélite por el "haz descendente". Para evitar interferencias entre los dos haces, las frecuencias de ambos son distintas. Las frecuencias del haz ascendente son mayores que las del haz descendente, debido a que cuanto mayor sea la frecuencia se produce mayor atenuación en el recorrido de la señal, y por tanto es preferible transmitir con más potencia desde la tierra, donde la disponibilidad energética es mayor.

Para evitar que los canales próximos del haz descendente interfieran entre sí, se utilizan polarizaciones distintas. En el interior del satélite existen unos bloques denominados transpondedores, que tienen como misión recibir, cambiar y transmitir las frecuencias del satélite, a fin de que la información que se envía desde la base llegue a las antenas receptoras.

Equipo necesario :

Para conectarse a Internet vía satélite son necesarios los siguientes elementos:
Módem o tarjeta PCI para satélite (DVB-S).
Antena parabólica y soporte.
Receptor de señales procedentes de satélites.LNB.
Alimentador o Radio.
Módem telefónico o conexión con Internet capaz de realizar envío de datos, si el acceso es unidireccional.
Un proveedor que proporcione el acceso a Internet por satélite.




Módem para satélite

Un módem satelital de la compañía estadounidense WildBlue.

Existen dos tipos de módems para la conexión por satélite, en función de la conexión a Internet:
Los módems unidireccionales (sat-módem), cuya característica principal es que sólo pueden recibir datos. Sólo cuentan con un canal de entrada, también llamado directo o "forward" y son conocidos como DVB-IP. Así, para enviar y recibir datos desde Internet se necesita además una conexión terrestre (telefónica o por cable).
Los módems bidireccionales (astromódem), capaces de recibir y enviar datos. Además del canal de entrada, cuentan con un canal de retorno (subida o uplink), vía satélite o DVB-RCS (Return Channel via Satellite). No necesita una conexión adicional convencional.

Los módems bidireccionales han de ser de DVB-sat data, con las siguientes características:

Modulación, QPSK (para recepción) y OQPSK (para transmisión): la técnica de modulación (o symbol rate) QPSK consiste en la formación de símbolos de dos bits, empleándose cuatro saltos de fase diferentes sobre la portadora (señal analógica); por lo tanto se forman cuatro puntos en la constelación de la señal (diagrama en donde visualizamos los estados de la señal), equidistantes y con la misma amplitud.

Codificación, Encadenada Reed-Solomon y Viterbi FEC (Viterbi Forward Error Correction). Describen una técnica para enviar bits redundantes suficientes para reconocer la información afectada por errores y en ciertas instancias corregirla. Existe una gran cantidad de códigos del tipo FEC que permiten corregir errores. Una comparación entre ellos se fundamenta en la relación entre la redundancia (incremento de velocidad), reducción de BER (Bit Error Code), que en este caso será de 10 o mejor tanto en trasmisión como en recepción, y complejidad del hardware (número de compuertas necesarias), se dispone de las siguientes variantes:

Corrección de errores: (FEC a bloques) Las variantes más usadas son BCH y RS (ReedSolomon); para explicarlo, primero se ha de explicar lo que es la distancia de Hamming, se denomina distancia Hamming entre dos códigos al número de símbolos en que se diferencian. La mínima distancia (dmin > 2.t + 1) donde t es el número de errores corregidos. Se denomina Código Cíclico a un FEC a bloques que utiliza un polinomio generador con un FSR (Feedback Shift Register).

Existen ciertas variantes del FEC a bloques los más usadas son:
Código Bose-Chaudhuri-Hocquenghen BCH. Es el tipo de código más conveniente para errores independientes, es usado por ejemplo en telefonía celular analógica AMPS en el canal de control bajo la versión BCH(48,36) y BCH(40,28), en codificadores digitales de TV a 34 Mb/s se utiliza el códec BCH(511,493) para corregir 2 errores por bloque.
Código Reed-Solomon RS. Es una variante del BCH y la más apropiada para ráfagas de errores, la velocidad del código depende del módem usado, al final del trabajo podremos encontrar varias tablas de especificaciones de unos cuantos módems, donde será posible analizar este dato.
FEC convolucional, aplicando el algoritmo de Viterbi:

El método, denominado decodificación de máxima probabilidad o algoritmo de Viterbi-1976 (Maximun Likelihood Metric o Minimun Distance Metric), consiste en computar a cada camino un peso consistente en el número de diferencias acumuladas.

El módem unidireccional tiene las mismas características, excepto que no tiene la capacidad de transmitir, por tanto no tiene modulación para la transmisión.

http://es.wikipedia.org/wiki/Internet_por_satélite

LMDS

El Sistema de Distribución Local Multipunto o LMDS (del inglés Local Multipoint Distribution Service) es una tecnología de conexión vía radio inalámbrica que permite, gracias a su ancho de banda, el despliegue de servicios fijos de voz, acceso a Internet, comunicaciones de datos en redes privadas, y video bajo demanda.

Está concebida de una manera celular, esto es, existen una serie de antenas fijas (no móviles) en cada estación base, que son los sectores que prestan servicio a determinados núcleos poblacionales (usuarios agrupados geográficamente dentro de una determinada zona de cobertura), lo cual resulta muy apetecible para las operadoras, puesto que se evitan los costosos cableados de fibra óptica o de pares de cobre necesarios para dar cobertura a zonas residenciales/empresariales.




LMDS usa señales en la banda de las microondas, en concreto la banda Ka (en torno a los 28 GHz, dependiente de las licencias de uso de espectro radioeléctrico del país), por lo que las distancias de transmisión son cortas (a esto se debe la palabra "Local" en el nombre de la tecnología), a tan altas frecuencias la reflexión de las señales es considerable (nótese que la banda Ka, es la banda del espectro usado para las comunicaciones satelitales). Pero también en muchos países europeos, se trabaja en 3,4 - 3,5GHz

A continuación, una tabla con las bandas de frecuencia (van separados en dos bloques, ya que usan unas N secciones de frecuencia para usar en total un ancho banda X) que son las asignadas por la FCC (Federal Communications Commision), y que se pretenden que sea el estándar:



Como se comentó antes, la reflexión en las señales de alta frecuencia es enorme, ya que son incapaces de atravesar obstáculos, cosa que sí es posible con las señales de baja frecuencia; debido a esto, desde la estación base hasta la antena del abonado ha de estar totalmente libre de obstáculos o no habrá servicio. Puesto que es lógico pensar, la orografía/geografía de la zona en la que hay que desplegar la tecnología LMDS desempeña un papel muy importante a tener en cuenta. En general, pueden formarse unas zonas de sombra (zonas "imposibles" de ofrecer servicio), pero éstas se pueden paliar con la colocación estratégica de las estaciones base/antenas para que una misma zona tenga acceso a varias células y también mediante el uso de amplificadores y reflectores.

Otro problema a tener en cuenta es la derivación de la energía de la señal transmitida en la molécula de agua (recordemos que estamos hablando de microondas), por lo que la potencia de la señal se reduce. Este efecto se palía mediante la subida de la potencia entregada o la reducción del tamaño de la célula. Básicamente se soluciona dando mayor potencia a la antena o simplemente sobredimensionando la red.

Esta interacción con la molécula de agua, invita a pensar que en condiciones lluviosas el servicio LMDS se cae, y es cierto; es lo que se le denomina en inglés "rainfall" (caída por lluvia) y para conseguir que el usuario reciba señal en estas condiciones se usa la corrección de errores hacia adelante, la adaptación dinámica de potencia y la adaptación dinámica de la modulación usada

http://es.wikipedia.org/wiki/LMDS

Caracteristicas y Arquitectura UMTS

Características:

UMTS permite introducir muchos más usuarios a la red global del sistema, y además permite incrementar la velocidad a 2 Mbps por usuario móvil[cita requerida].

Está siendo desarrollado por 3GPP (3rd Generation Partnership Project), un proyecto común en el que colaboran: ETSI (Europa), ARIB/TIC (Japón), ANSI T-1 (USA), TTA (Korea), CWTS (China). Para alcanzar la aceptación global, 3GPP va introduciendo UMTS por fases y versiones anuales. La primera fue en 1999, describía transiciones desde redes GSM. En el 2000, se describió transiciones desde IS-95 y TDMA. ITU es la encargada de establecer el estándar para que todas las redes 3G sean compatibles.

UMTS ofrece los siguientes servicios:
Facilidad de uso y bajos costes: UMTS proporcionará servicios de uso fácil y adaptable para abordar las necesidades y preferencias de los usuarios, amplia gama de terminales para realizar un fácil acceso a los distintos servicios y bajo coste de los servicios para asegurar un mercado masivo. Como el roaming internacional o la capacidad de ofrecer diferentes formas de tarificación[cita requerida].
Nuevos y mejorados servicios: Los servicios de voz mantendrán una posición dominante durante varios años. Los usuarios exigirán a UMTS servicios de voz de alta calidad junto con servicios de datos e información. Las proyecciones muestran una base de abonados de servicios multimedia en fuerte crecimiento hacia el año 2010, lo que posibilita también servicios multimedia de alta calidad en áreas carentes de estas posibilidades en la red fija, como zonas de difícil acceso. Un ejemplo de esto es la posibilidad de conectarse a Internet desde el terminal móvil o desde el ordenador conectado a un terminal móvil con UMTS.

Acceso rápido: La principal ventaja de UMTS sobre la segunda generación móvil (2G), es la capacidad de soportar altas velocidades de transmisión de datos de hasta 144 kbit/s sobre vehículos a gran velocidad, 384 kbit/s en espacios abiertos de extrarradios y 7.2 Mbit/s con baja movilidad (interior de edificios)[cita requerida]. Esta capacidad sumada al soporte inherente del protocolo de Internet (IP), se combinan poderosamente para prestar servicios multimedia interactivos y nuevas aplicaciones de banda ancha, tales como servicios de video telefonía y video conferencia y transmisión de audio y video en tiempo real.

Arquitectura:

La estructura de redes UMTS esta compuesta por dos grandes subredes: la red de telecomunicaciones y la red de gestión. La primera es la encargada de sustentar la transmisión de información entre los extremos de una conexión. La segunda tiene como misiones la provisión de medios para la facturación y tarificación de los abonados, el registro y definición de los perfiles de servicio, la gestión y seguridad en el manejo de sus datos, así como la operación de los elementos de la red, con el fin de asegurar el correcto funcionamiento de ésta, la detección y resolución de averías o anomalías, o también la recuperación del funcionamiento tras periodos de apagado o desconexión de algunos de sus elementos. Dentro de este apartado vamos a analizar sólo la primera de las dos subredes, esto es, la de telecomunicaciones.

UMTS usa una comunicación terrestre basada en una interfaz de radio W-CDMA, conocida como UMTS Terrestrial Radio Access (UTRA). Soporta división de tiempo duplex (TDD) y división de frecuencia duplex (FDD). Ambos modelos ofrecen ratios de información de hasta 2 Mbps.

Una red UMTS se compone de los siguientes elementos:
Núcleo de red (Core Network). El núcleo de red incorpora funciones de transporte y de inteligencia. Las primeras soportan el transporte de la información de tráfico y señalización, incluida la conmutación. El encaminamiento reside en las funciones de inteligencia, que comprenden prestaciones como la lógica y el control de ciertos servicios ofrecidos a través de una serie de interfaces bien definidas; también incluyen la gestión de la movilidad. A través del núcleo de red, el UMTS se conecta con otras redes de telecomunicaciones, de forma que resulte posible la comunicación no sólo entre usuarios móviles UMTS, sino también con los que se encuentran conectados a otras redes.
Red de acceso radio (UTRAN). Desarrollada para obtener altas velocidades de transmisión. La red de acceso radio proporciona la conexión entre los terminales móviles y el Core Network. En UMTS recibe el nombre de UTRAN (Acceso Universal Radioeléctrico Terrestre) y se compone de una serie de subsistemas de redes de radio (RNS) que son el modo de comunicación de la red UMTS. Un RNS es responsable de los recursos y de la transmisión / recepción en un conjunto de celdas y esta compuesto de un RNC y uno o varios nodos B. Los nodos B son los elementos de la red que se corresponden con las estaciones base. El Controlador de la red de radio (RNC) es responsable de todo el control de los recursos lógicos de una BTS (Estación Base Transmisora).
UE (User Equipment). Se compone del terminal móvil y su módulo de identidad de servicios de usuario/suscriptor (USIM) equivalente a la tarjeta SIM del teléfono móvil.

Parte también de esta estructura serían las redes de transmisión empleadas para enlazar los diferentes elementos que la integran. Como los protocolos UU y IU.

Un ejemplo de una conexión a la red UMTS desde un terminal sería el que se explica con el siguiente diagrama:

Partimos de nuestro dispositivo 3G ya sea un teléfono móvil o una tarjeta para ordenadores compatible con esta red, nuestros datos llegan al NodoB que es el encargado de recoger las señales emitidas por los terminales y pasan al RNC para ser procesadas, estos dos componentes es lo que llamamos UTRAN, desde el UTRAN pasa al núcleo de la red que está dividido en conmutadores que distribuyen los datos por los diferentes sistemas, según vayan a uno u otro seguirán un camino pasando por el MSC (Mobile services Switching Center), o por el SGSN (Serving GPRS Support Node) y posteriormente por el GGSN (Gateway GPRS Support Node).

http://es.wikipedia.org/wiki/UMTS

Universal Mobile Telecommunications System

Sistema Universal de Telecomunicaciones Móviles (Universal Mobile Telecommunications System - UMTS) es una de las tecnologías usadas por los móviles de tercera generación (3G, también llamado W-CDMA), sucesora de GSM, debido a que la tecnología GSM propiamente dicha no podía seguir un camino evolutivo para llegar a brindar servicios considerados de Tercera Generación.

Aunque inicialmente esté pensada para su uso en teléfonos móviles, la red UMTS no está limitada a estos dispositivos, pudiendo ser utilizada por otros.

Sus tres grandes características son las capacidades multimedia, una velocidad de acceso a Internet elevada, la cual también le permite transmitir audio y video en tiempo real; y una transmisión de voz con calidad equiparable a la de las redes fijas. Además, dispone de una variedad de servicios muy extensa



En 1985, surge en Europa la primera generación (1G) tras adaptar el sistema AMPS (Advanced Mobile Phone System) a los requisitos Europeos, y ser bautizada como TACS (Total Access Communications System). TACS engloba a todas aquellas tecnologías de comunicaciones móviles analógicas. Puede transmitir voz pero no datos. Actualmente esta tecnología está obsoleta y se espera que desaparezca en un futuro cercano.

Debido a la sencillez y las limitaciones de la primera generación, surge el sistema GSM (Global System for Mobile Communications) que marcara el inicio de la segunda generación (2G). Su principal característica es la capacidad de transmitir datos además de voz, a una velocidad de 9,6 kbit/s. Lo cual le ha permitido sacar a la luz el famoso y exitoso sistema de mensajes cortos (SMS).

En 2001 surge la denominada segunda generación y media (2.5G) en Estados Unidos y Europa como paso previo a la 3G. En esta generación están incluidas aquellas tecnologías que permiten una mayor capacidad de transmisión de datos y que surgieron como paso previo a las tecnologías 3G. La tecnología más notoria de esta generación es el GPRS (General Packet Radio System), capaz de coexistir con GSM, pero ofreciendo servicio portador más eficiente para el acceso a redes IP como Internet. La velocidad máxima de GPRS es 171,2 kbit/s aunque en la práctica no suele pasar de 40 kbit/s de bajada y de 9,6 kbit/s de subida.

Más tarde surgieron ya las tecnologías 3G. Las tecnologías de la tercera generación (3G) se categorizan dentro del IMT-2000 (International Mobile Telecommunications-2000) de la ITU (Internacional Telecommunication Union), que marca el estándar para que todas las redes 3G sean compatibles unas con otras.

Los servicios que ofrecen las tecnologías 3G son básicamente: acceso a Internet, servicios de banda ancha, roaming internacional e interoperatividad. Pero fundamentalmente, estos sistemas permiten el desarrollo de entornos multimedia para la transmisión de vídeo e imágenes en tiempo real, fomentando la aparición de nuevas aplicaciones y servicios tales como videoconferencia o comercio electrónico con una velocidad máxima de 2 Mbit/s en condiciones óptimas, como por ejemplo en el entorno interior de edificios.

http://es.wikipedia.org/wiki/UMTS

CDMA

La multiplexación por división de código, acceso múltiple por división de código o CDMA (del inglés Code Division Multiple Access) es un término genérico para varios métodos de multiplexación o control de acceso al medio basados en la tecnología de espectro expandido.

La traducción del inglés spread spectrum se hace con distintos adjetivos según las fuentes; pueden emplearse indistintamente espectro ensanchado, expandido, difuso o disperso para referirse en todos los casos al mismo concepto.

Habitualmente se emplea en comunicaciones inalámbricas (por radiofrecuencia), aunque también puede usarse en sistemas de fibra óptica o de cable.



Uno de los problemas a resolver en comunicaciones de datos es cómo repartir entre varios usuarios el uso de un único canal de comunicación o medio de transmisión, para que puedan gestionarse varias comunicaciones al mismo tiempo. Sin un método de organización, aparecerían interferencias que podrían bien resultar molestas, o bien directamente impedir la comunicación. Este concepto se denomina multiplexado o control de acceso al medio, según el contexto.

Se aplica el nombre "multiplexado" para los casos en que un sólo dispositivo determina el reparto del canal entre distintas comunicaciones, como por ejemplo un concentrador situado al extremo de un cable de fibra óptica; para los terminales de los usuarios finales, el multiplexado es transparente. Se emplea en cambio el término "control de acceso al medio" cuando son los terminales de los usuarios, en comunicación con un dispositivo que hace de nodo de red, los que deben usar un cierto esquema de comunicación para evitar interferencias entre ellos, como por ejemplo un grupo de teléfonos móviles en comunicación con una antena del operador.

Para resolverlo, CDMA emplea una tecnología de espectro expandido y un esquema especial de codificación, por el que a cada transmisor se le asigna un código único, escogido de forma que sea ortogonal respecto al del resto; el receptor capta las señales emitidas por todos los transmisores al mismo tiempo, pero gracias al esquema de codificación (que emplea códigos ortogonales entre sí) puede seleccionar la señal de interés si conoce el código empleado.

Otros esquemas de multiplexación emplean la división en frecuencia (FDMA), en tiempo (TDMA) o en el espacio (SDMA) para alcanzar el mismo objetivo: la separación de las distintas comunicaciones que se estén produciendo en cada momento, y evitar o suprimir las interferencias entre ellas. Los sistemas en uso real (como IS-95 o UMTS) suelen emplear varias de estas estrategias al mismo tiempo para asegurar una mejor comunicación.

Una analogía posible para el problema del acceso múltiple sería una habitación (que representaría el canal) en la que varias personas desean hablar al mismo tiempo. Si varias personas hablan a la vez, se producirán interferencias y se hará difícil la comprensión. Para evitar o reducir el problema, podrían hablar por turnos (estrategia de división por tiempo), hablar unos en tonos más agudos y otros más graves de forma que sus voces se distinguieran (división por frecuencia), dirigir sus voces en distintas direcciones de la habitación (división espacial) o hablar en idiomas distintos (división por código, el objeto de este artículo): como en CDMA, sólo las personas que conocen el código (es decir, el "idioma") pueden entenderlo.

La división por código se emplea en múltiples sistemas de comunicación por radiofrecuencia, tanto de telefonía móvil (como IS-95, CDMA2000, FOMA o UMTS), transmisión de datos (WiFi) o navegación por satélite (GPS).

En CDMA, la señal se emite con un ancho de banda mucho mayor que el precisado por los datos a transmitir; por este motivo, la división por código es una técnica de acceso múltiple de espectro expandido. A los datos a transmitir simplemente se les aplica la función lógica XOR con el código de transmisión, que es único para ese usuario y se emite con un ancho de banda significativamente mayor que los datos.

Generación de la señal CDMA.

A la señal de datos, con una duración de pulso Tb, se le aplica la función XOR con el código de transmisión, que tiene una duración de pulso Tc. (Nota: el ancho de banda requerido por una señal es 1/T, donde T es el tiempo empleado en la transmisión de un bit). Por tanto, el ancho de banda de los datos transmitidos es 1/Tb y el de la señal de espectro expandido es 1/Tc. Dado que Tc es mucho menor que Tb, el ancho de banda de la señal emitida es mucho mayor que el de la señal original, y de ahí el nombre de "espectro expandido".

Cada usuario de un sistema CDMA emplea un código de transmisión distinto (y único) para modular su señal. La selección del código a emplear para la modulación es vital para el buen desempeño de los sistemas CDMA, porque de él depende la selección de la señal de interés, que se hace por correlación cruzada de la señal captada con el código del usuario de interés, así como el rechazo del resto de señales y de las interferencias multi-path (producidas por los distintos rebotes de señal).

El mejor caso se presenta cuando existe una buena separación entre la señal del usuario deseado (la señal de interés) y las del resto; si la señal captada es la buscada, el resultado de la correlación será muy alto, y el sistema podrá extraer la señal. En cambio, si la señal recibida no es la de interés, como el código empleado por cada usuario es distinto, la correlación debería ser muy pequeña, idealmente tendiendo a cero (y por tanto eliminando el resto de señales). Y además, si la correlación se produce con cualquier retardo temporal distinto de cero, la correlación también debería tender a cero. A esto se le denomina autocorrelación y se emplea para rechazar las interferencias multi-path.

En general, en división de código se distinguen dos categorías básicas: CDMA síncrono (mediante códigos ortogonales) y asíncrono (mediante secuencias pseudoaleatorias).

http://es.wikipedia.org/wiki/Acceso_múltiple_por_división_de_código

Arquitectura GSM

Lo primero a lo que nos enfrentamos al diseñar la estructura de red para un sistema de telefonía móvil es la limitación en el rango de frecuencias disponibles. Cada "conversación" (o cada cliente de tráfico de datos) requiere un mínimo de ancho de banda para que pueda transmitirse correctamente. A cada operador en el mercado se le asigna cierto ancho de banda, en ciertas frecuencias delimitadas, que debe repartir para el envío y la recepción del tráfico a los distintos usuarios (que, por una parte, reciben la señal del otro extremo, y por otra envían su parte de la “conversación”). Por tanto, no puede emplearse una sola antena para recibir la señal de todos los usuarios a la vez, ya que el ancho de banda no sería suficiente; y además, deben separarse los rangos en que emiten unos y otros usuarios para evitar interferencias entre sus envíos. A este problema, o más bien a su solución, se le suele referir como reparto del espectro o división del acceso al canal. El sistema GSM basa su división de acceso al canal en combinar los siguientes modelos de reparto del espectro disponible. El primero es determinante a la hora de especificar la arquitectura de red, mientras que el resto se resuelve con circuitería en los terminales y antenas del operador:
Empleo de celdas contiguas a distintas frecuencias para repartir mejor las frecuencias (SDMA, Space Division Multiple Access o acceso múltiple por división del espacio); reutilización de frecuencias en celdas no contiguas;
División del tiempo en emisión y recepción mediante TDMA (Time Division Multiple Access, o acceso múltiple por división del tiempo);
Separación de bandas para emisión y recepción y subdivisión en canales radioeléctricos (protocolo FDMA, Frequency Division Multiple Access o acceso múltiple por división de la frecuencia);
Variación pseudoaleatoria de la frecuencia portadora de envío de terminal a red (FHMA, Frequency Hops Multiple Access o acceso múltiple por saltos de frecuencia).

La BSS, capa inferior de la arquitectura (terminal de usuario – BS – BSC), resuelve el problema del acceso del terminal al canal. La siguiente capa (NSS) se encargará, por un lado, del enrutamiento (MSC) y por otro de la identificación del abonado, tarificación y control de acceso (HLR, VLR y demás bases de datos del operador). Este párrafo con tantas siglas se explica a continuación con más calma, pero sirve de resumen general de la arquitectura de red empleada.

Por otra parte, las comunicaciones que se establezcan viajarán a través de distintos sistemas. Para simplificar, se denomina canal de comunicaciones a una comunicación establecida entre un sistema y otro, independientemente del método que realmente se emplee para establecer la conexión. En GSM hay definidos una serie de canales lógicos para el tráfico de llamadas, datos, señalización y demás propósitos.




Capa de radio y control de radio: subsistema de estaciones base o BSS

Esta capa de red se ocupa de proporcionar y controlar el acceso de los terminales al espectro disponible, así como del envío y recepción de los datos.
[editar]
División en celdas: estaciones base o BS

Esquema general de una red GSM.

El sistema debe ser capaz de soportar una gran carga de usuarios, con muchos de ellos utilizando la red al mismo tiempo. Si sólo hubiera una antena para todos los usuarios, el espacio radioeléctrico disponible se saturaría rápidamente por falta de ancho de banda. Una solución es reutilizar las frecuencias disponibles. En lugar de poner una sola antena para toda una ciudad, se colocan varias, y se programa el sistema de manera que cada antena emplee frecuencias distintas a las de sus vecinas, pero las mismas que otras antenas fuera de su rango. A cada antena se le reserva cierto rango de frecuencias, que se corresponde con un cierto número de canales radioeléctricos (cada uno de los rangos de frecuencia en que envía datos una antena). Así, los canales asignados a cada antena de la red del operador son diferentes a los de las antenas contiguas, pero pueden repetirse entre antenas no contiguas.

Además, se dota a las antenas de la electrónica de red necesaria para comunicarse con un sistema central de control (y la siguiente capa lógica de la red) y para que puedan encargarse de la gestión del interfaz radio: el conjunto de la antena con su electrónica y su enlace con el resto de la red se llama estación base (BS, Base Station). El área geográfica a la que proporciona cobertura una estación base se llama celda o célula (del inglés cell, motivo por el cual a estos sistemas se les llama a veces celulares). A este modelo de reparto del ancho de banda se le denomina a veces SDMA o división espacial.

El empleo de celdas requiere de una capa adicional de red que es novedosa en el estándar GSM respecto a los sistemas anteriores: es el controlador de estaciones base, o BSC, (Base Station Controller) que actúa de intermediario entre el “corazón” de la red y las antenas, y se encarga del reparto de frecuencias y el control de potencia de terminales y estaciones base. El conjunto de estaciones base coordinadas por un BSC proporcionan el enlace entre el terminal del usuario y la siguiente capa de red, ya la principal, que veremos más adelante. Como capa de red, el conjunto de BSs + BSC se denomina subsistema de estaciones base, o BSS (Base Station subsystem).

Una estación base GSM puede alcanzar un radio de cobertura a su alrededor desde varios cientos de metros (en estaciones urbanas) hasta un máximo práctico de 35 km (en zonas rurales), según su potencia y la geografía del entorno. Sin embargo, el número de usuarios que puede atender cada BS está limitado por el ancho de banda (subdividido en canales) que el BSC asigna a cada estación, y aunque podría pensarse que las estaciones base deberían tener una gran potencia para cubrir mayor área, tienen una potencia nominal de 320 W como máximo (frente a las antenas de FM o televisión, que poseen potencias de emisión de miles de Watts, un valor casi despreciable) y de hecho siempre emiten al menor nivel de potencia posible para evitar interferir con celdas lejanas que pudieran emplear el mismo rango de frecuencias, motivo por el cual es raro que se instalen modelos de más de 40 W. Es más, en zonas urbanas muy pobladas o túneles se instala un mayor número de BSs de potencia muy limitada (menor que 2,5 W) para permitir la creación de las llamadas pico y microceldas, que permiten mejor reutilización de las frecuencias (cuantas más estaciones, más reutilización de frecuencias y más usuarios admisibles al mismo tiempo) o bien dan cobertura en lugares que una BS normal no alcanza o precisan de gran capacidad (túneles de metro o de carreteras, espacios muy concurridos, ciudades muy pobladas).

Por tanto, en zonas donde exista una gran concentración de usuarios, como ciudades, debe instalarse un gran número de BSs de potencia muy limitada, y en zonas de menor densidad de uso, como áreas rurales, puede reducirse el número de estaciones y ampliar su potencia. Esto asegura además mayor duración de la batería de los terminales y menor uso de potencia de las estaciones base.

Además, el terminal no se encuentra emitiendo durante el transcurso de toda la llamada. Para ahorrar batería y permitir un uso más eficiente del espectro, se emplea el esquema de transmisión TDMA (Time Division Multiple Access, o acceso múltiple por división del tiempo). El tiempo se divide en unidades básicas de 4,615 ms, y éstas a su vez en 8 time slots o ranuras de tiempo de 577 μs. Durante una llamada, se reserva el primer time slot para sincronización, enviada por la BS; unos slots más tarde, el terminal emplea un slot para enviar de terminal a BS y otro para recibir, y el resto quedan libres para el uso de otros usuarios en la misma BS y canal. Así se permite un buen aprovechamiento del espectro disponible y una duración de batería superior, al no usar el emisor del terminal constantemente sino sólo una fracción del tiempo.
[editar]
Handover: el controlador de estaciones base o BSC

Al mismo tiempo, la comunicación no debe interrumpirse porque un usuario se desplace y salga de la zona de cobertura de una BS, deliberadamente limitada para que funcione bien el sistema de celdas. Tanto el terminal del usuario como la BS calibran los niveles de potencia con que envían y reciben las señales e informan de ello al controlador de estaciones base o BSC (Base Station Controller). Además, normalmente varias estaciones base al mismo tiempo pueden recibir la señal de un terminal y medir su potencia. De este modo, el controlador de estaciones base o BSC puede detectar si el usuario va a salir de una celda y entrar en otra, y avisa a ambas BSs y al terminal para el proceso de salto de una BS a otra: es el proceso conocido como handover o traspaso entre celdas, una de las tres labores del BSC, que en uso–. En ese caso el BSC remite al terminal a otra estación contigua, menos saturada, incluso aunque el terminal tenga que emitir con más potencia. Por eso es habitual percibir cortes de la comunicación en zonas donde hay muchos usuarios al mismo tiempo. Esto nos indica la segunda y tercera labor del BSC, que son controlar la potencia y la frecuencia a la que emiten tanto los terminales como las BSs para evitar cortes con el menor gasto de batería posible.
[editar]
Señalización

Además del uso para llamadas del espectro, reservando para ello los canales precisos mientras se estén usando, el estándar prevé que el terminal envíe y reciba datos para una serie de usos de señalización, como por ejemplo el registro inicial en la red al encender el terminal, la salida de la red al apagarlo, el canal en que va a establecerse la comunicación si entra o sale una llamada, la información del número de la llamada entrante... Y prevé además que cada cierto tiempo el terminal avise a la red de que se encuentra encendido para optimizar el uso del espectro y no reservar capacidad para terminales apagados o fuera de cobertura.

Este uso del transmisor, conocido como ráfagas de señalización, ocupa muy poca capacidad de red y se utiliza también para enviar y recibir los mensajes cortos SMS sin necesidad de asignar un canal de radio. Es sencillo escuchar una ráfaga de señalización si el teléfono se encuentra cerca de un aparato susceptible de captar interferencias, como un aparato de radio o televisión.

En GSM se definen una serie de canales para establecer la comunicación, que agrupan la información a transmitir entre la estación base y el teléfono. Se definen los siguientes tipos de canal:
Canales de trafico

(Traffic Channels, TCH): albergan las llamadas en proceso que soporta la estación base.
Canales de control.
Canales de difusión (Broadcast Channels, BCH).
Canal de control broadcast (Broadcast Control Channel, BCCH): comunica desde la estación base al móvil la información básica y los parámetros del sistema.
Canal de control de frecuencia (Frequency Control Channel, FCCH): comunica al móvil (desde la BS) la frecuencia portadora de la BS.
Canal de control de sincronismo (Synchronization Control Channel, SCCH). Informa al móvil sobre la secuencia de entrenamiento (training) vigente en la BS, para que el móvil la incorpore a sus ráfagas.
Canales de control dedicado (Dedicated Control Channels, DCCH).
Canal de control asociado lento (Slow Associated Control Channel, SACCH).
Canal de control asociado rápido (Fast Associated Control Channel, FACCH).
Canal de control dedicado entre BS y móvil (Stand-Alone Dedicated Control Channel, SDCCH).
Canales de control común (Common Control Channels, CCCH).
Canal de aviso de llamadas (Paging Channel, PCH): permite a la BS avisar al móvil de que hay una llamada entrante hacia el terminal.
Canal de acceso aleatorio (Random Access Channel, RACH): alberga las peticiones de acceso a la red del móvil a la BS.
Canal de reconocimiento de acceso (Access-Grant Channel, AGCH):procesa la aceptación, o no, de la BS de la petición de acceso del móvil.
Canales de Difusión Celular (Cell Broadcast Channels, CBC).
[editar]
Subsistema de red y conmutación o NSS
Artículo principal: NSS

El subsistema de red y conmutación (Network and Switching System o NSS), también llamado núcleo de red (Core Network), es la capa lógica de enrutamiento de llamadas y almacenamiento de datos. Notemos que, hasta el momento, sólo teníamos una conexión entre el terminal, las estaciones base BS y su controlador BSC, y no se indicaba manera de establecer conexión entre terminales o entre usuarios de otras redes. Cada BSC se conecta al NSS, y es éste quien se encarga de tres asuntos:
Enrutar las transmisiones al BSC en que se encuentra el usuario llamado (central de conmutación móvil o MSC);
Dar interconexión con las redes de otros operadores;
Dar conexión con el subsistema de identificación de abonado y las bases de datos del operador, que dan permisos al usuario para poder usar los servicios de la red según su tipo de abono y estado de pagos (registros de ubicación base y visitante, HLR y VLR).
[editar]
Central de conmutación móvil o MSC

La central de conmutación móvil o MSC (Mobile Switching Central) se encarga de iniciar, terminar y canalizar las llamadas a través del BSC y BS correspondientes al abonado llamado. Es similar a una centralita telefónica de red fija, aunque como los usuarios pueden moverse dentro de la red realiza más actualizaciones en su base de datos interna.

Cada MSC está conectado a los BSCs de su área de influencia, pero también a su VLR, y debe tener acceso a los HLRs de los distintos operadores e interconexión con las redes de telefonía de otros operadores.
[editar]
Registros de ubicación base y visitante (HLR y VLR)

El HLR (Home Location Register, o registro de ubicación base) es una base de datos que almacena la posición del usuario dentro de la red, si está conectado o no y las características de su abono (servicios que puede y no puede usar, tipo de terminal, etcétera). Es de carácter más bien permanente; cada número de teléfono móvil está adscrito a un HLR determinado y único, que administra su operador móvil.

Al recibir una llamada, el MSC pregunta al HLR correspondiente al número llamado si está disponible y dónde está (es decir, a qué BSC hay que pedir que le avise) y enruta la llamada o da un mensaje de error.

El VLR (Visitor Location Register o registro de ubicación de visitante) es una base de datos más volátil que almacena, para el área cubierta por un MSC, los identificativos, permisos, tipos de abono y localizaciones en la red de todos los usuarios activos en ese momento y en ese tramo de la red. Cuando un usuario se registra en la red, el VLR del tramo al que está conectado el usuario se pone en contacto con el HLR de origen del usuario y verifica si puede o no hacer llamadas según su tipo de abono. Esta información permanece almacenada en el VLR mientras el terminal de usuario está encendido y se refresca periódicamente para evitar fraudes (por ejemplo, si un usuario de prepago se queda sin saldo y su VLR no lo sabe, podría permitirle realizar llamadas).

Tengamos en cuenta que el sistema GSM permite acuerdos entre operadores para compartir la red, de modo que un usuario en el extranjero –por ejemplo— puede conectarse a una red (MSC, VLR y capa de radio) de otro operador. Al encender el teléfono y realizar el registro en la red extranjera, el VLR del operador extranjero toma nota de la información del usuario, se pone en contacto con el HLR del operador móvil de origen del usuario y le pide información sobre las características de abono para permitirle o no realizar llamadas. Así, los distintos VLRs y HLRs de los diferentes operadores deben estar interconectados entre sí para que todo funcione. Para este fin existen protocolos de red especiales, como SS7 o IS-41; los operadores deciden qué estándar escoger en sus acuerdos bilaterales de roaming (itinerancia) e interconexión.

http://es.wikipedia.org/wiki/GSM